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Abstract—Today’s legal restrictions that protect the privacy of
biometric data are hampering fingerprint recognition researches.
For instance, all high-resolution fingerprint databases ceased
to be publicly available. To address this problem, we present
a novel hybrid approach to synthesize realistic, high-resolution
fingerprints. First, we improved Anguli, a handcrafted fingerprint
generator, to obtain dynamic ridge maps with sweat pores and
scratches. Then, we trained a CycleGAN to transform these
maps into realistic fingerprints. Unlike other CNN-based works,
we can generate several images for the same identity. We used
our approach to create a synthetic database with 7400 images
in an attempt to propel further studies in this field without
raising legal issues. We included sweat pore annotations in 740
images to encourage research developments in pore detection.
In our experiments, we employed two fingerprint matching
approaches to confirm that real and synthetic databases have
similar performance. We conducted a human perception analysis
where sixty volunteers could hardly differ between real and
synthesized fingerprints. Given that we also favorably compare
our results with the most advanced works in the literature, our
experimentation suggests that our approach is the new state-of-
the-art.

I. INTRODUCTION

Fingerprint recognition is widely studied thanks to its com-
pliance with the core premises of biometrics: permanence and
distinctiveness [1], [2]. It is possible to analyze the ridge pat-
terns on fingerprints at different scales and resolutions. These
patterns can be classified as Level 1 (L1 - global patterns,
such as ridge orientation maps, and fingerprint classes), Level
2 (L2 - local patterns, such as minutiae) and Level 3 (L3 -
fine details, such as sweat pores, incipient ridges and dots).

With the development of high-resolution sensors able to
capture L3 fingerprint images, researchers saw an opportunity
to devise new and more accurate recognition approaches by
using the most exploited L3 feature in the literature, the pres-
ence of sweat pores [3], [4], [5]. Besides, L3-based approaches
improve security by hindering spoof attempts [6], [7], [8].

Despite the recent improvements brought to the fingerprint
recognition research area, L3 fingerprint databases are being
discontinued. For instance, databases such as the NIST Special
Database 30 [9] and the Hong Kong Polytechnic University
High Resolution Fingerprint database (PolyU) [10] are no
longer publicly available. More recently, Anand and Kan-
hangad [11], [12] created L3 databases for their recognition ex-
periments. However, until the present moment, these databases
were not released. The main reason for that is the existence
of legal restrictions protecting the privacy of biometric data,
which hinders the evolution of fingerprint recognition research.

Creating a synthetic database is a valid alternative to solve
this problem. Synthetic generation techniques are widely ex-

ploited in several areas, such as optical flow computation [13],
indoor robot navigation [14], and autonomous driving [15].
The same is true for the fingerprint recognition field.

Earlier works, such as SFinGe [16] and Anguli[17], de-
veloped handcrafted frameworks for fingerprint generation
based on the knowledge of an expert. Their design allows
reasonable control over the identity of the output images,
but lack realism, especially when considering L3 features.
Besides, SFinGe restricts the generation of large datasets,
difficulting the generation of multiple instances of a single
identity. Finger-GAN [18] and Cao and Jain’s approach [19]
employed Generative Adversarial Networks (GAN) [20] to
learn how to generate realistic fingerprints from a training set
of real examples. However, both of these works present many
unnatural artifacts and cannot generate multiple images for the
same identity.

We propose a novel approach to create realistic, high-
resolution synthetic fingerprints while maintaining control over
the identity of the output images. Our goal is to foster further
studies in this field without raising legal issues that come with
real biometric data. Our contributions are:

1) A novel hybrid fingerprint generation approach that
combines a handcrafted identity generator and a learned
texturizer to achieve realistic results and generate multi-
ple images of a single identity. A visual comparison to
existing approaches shows that our results are the new
state-of-the-art. Also, a perception experiment shows
that humans can hardly differ between real and our
synthetic images.

2) A public database1 of L3 synthetic fingerprint images
with five subsets of 148 identities, with 10 samples per
identity, totaling 7400 fingerprint images. Also, we in-
clude sweat pore annotations for 740 images to assist in
pore detection research [21]. This is the largest publicly
available database with L3 fingerprints nowadays.

II. SYNTHETIC FINGERPRINT GENERATION

To generate high-resolution synthetic fingerprints, we split
our approach into two stages. The first stage concerns pro-
cedures required to create multiple instances of fingerprints,
which we call seed images. The second stage consists of
using CycleGAN [22] to translate seed images into realistic
L3 fingerprints. Figure 1 summarizes the workflow required
to create a high-resolution synthetic fingerprint using the
proposed method.

1https://andrewyzy.github.io/L3-SF/
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Fig. 1. Flowchart with the steps to create a high-resolution synthetic fingerprint using the proposed approach.

The first stage consists of the following processes:
1) Master fingerprint generation: we extended

Anguli [17], an open-source implementation of
SFinGe [16], to create fingerprint ridge maps with
random ridge-flow frequency. Also, we segment ridges
and dynamically change their thicknesses. We call the
resulting images master fingerprints (Section II-A).

2) Pore and scratch generation: we add pores and
scratches to each master fingerprint following a distri-
bution learned from real images to obtain L3 master
fingerprints (Section II-B).

3) Fingerprint acquisition simulation: to simulate acqui-
sition, we randomly cut the L3 master fingerprints fol-
lowing a distribution of the displacement among images
of the same person in a real database, thus creating
different instances for each identity. These instances are
called seed images (Section II-C).

The second stage consists of performing CycleGAN transla-
tion to transform any seed image into a realistic L3 fingerprint.
The model employed in this step is obtained through the
following processes:

1) Training set generation: to train CycleGAN, we create
several seed images following the steps of the first stage
of our approach. Data augmentation is then applied to
real and seed images to compose the training set (Section
III-A).

2) CycleGAN training: uses the training set to create
a CNN model that translates seed images to high-
resolution fingerprints (Section II-D).

A. Master fingerprint generation

We use Anguli [17] to create the ridge map that composes a
master fingerprint within one of the following classes: Whorl,
Right Loop, Left Loop, Plain Arch, and Tented Arch. Figure 2
illustrates these classes. When creating a new identity, it is
necessary to follow the proportion of these classes in a real
population. Martijn van Mensvoort [23] gathered fingerprint
distributions from 32 countries through a compilation of
28 published articles. Each country has its peculiarities and

proportions, so we decided to use the global mean distribution.
The mean distribution for 32 countries is: Whorl: 41%, Right
Loop: 50%, Left Loop: 3%, Arch: 6%. Since Anguli can
create two arch fingerprint types, we used the ratio provided
by Wang [24]: Plain Arch: 72.22% and Tented Arch: 27.77%.

Left Loop Right Loop Whorl Plain Arch Tented Arch

Fig. 2. Five fingerprint class patterns created by our modified version of
Anguli.

The Gabor filter plays an important role when generating
ridges using Anguli. By changing its scale, we introduce
variations to the ridge frequency in synthetic fingerprints. We
changed Anguli to randomly modify the scale of the Gabor
filter by up to 20%. To exemplify this effect, we show images
in Figure 2 with different frequencies. As can be observed,
the first image frequency is much higher than the second one.

To segment ridges, we upscale the modified Anguli images,
which have 275×400 pixels, by a factor of 3 with FSRCNN
[25] and smooth the result by applying a 3x3 mean filter. Then,
we skeletonize those images using Zhang and Suen’s thinning
algorithm [26] and split continuous segments of pixels as
individual ridges. To prevent spurious minutiae, we eliminate
ridges smaller than 5 pixels.

To create a higher variability in the ridges’ thicknesses,
we dynamically change ridge thickness based on the sine
function, generating a smooth transition among neighboring
ridges. We iteratively calculate wi = |3 × sin t|, where wi is
the width of the i-th ridge and t is a counter starting at a
random value for each image. After processing a ridge, t is
incremented by 0.1. Ridges are processed from left to right, top
to bottom. This approach avoids abrupt changes in thickness
among neighboring ridges and also adds a stochastic factor to



the thickness generation. The outcome is a master fingerprint
with 825×1200 pixels, as illustrated in Figure 3.

(a) Anguli output (b) Master fingerprint

Fig. 3. Example of (a) an output of our modified version of Anguli and (b)
its respective master fingerprint after ridge thickness sinusoidal perturbation.
Note the ridge thickness variability in the master fingerprint, where the ridges
are thicker on the center compared to the borders. Also, note our aliased result
in comparison to Anguli’s pixelated ridges.

B. Pore and scratch generation

This step consists in marking where the pores will be placed
on the ridges and applying the scratches on the images. To
measure the distance distribution from one pore to another, we
use a pore-based ridge reconstruction approach [3]. Given a
training set of real fingerprint images, we compute the average
distance and the standard deviation among neighboring pores
as our reference distribution.

To add pores, we utilize the segmented ridges generated
in Section II-A. Starting from the beginning of a ridge, we
iteratively sample distances di from the reference distribution.
We follow the ridge pixels to add the i-th pore di away from
the previous pore until the end of the ridge is reached. This
process of creating pores is illustrated in Figure 4.

Generated pores

Ridge pixels
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d2 =

8
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12Start point

Fig. 4. Illustration of the pore generation process. Red squares represent a
sequence of pixels in a ridge and the green circles are the generated pores.
Given a start point, pore distances are sampled from the reference distribution.
In this example, new pores are created with distances d1 = 5, d2 = 8 and
d3 = 12.

To create scratches, we count the number of scratches in
each fingerprint on a real database. With these values, we
used the normalized cumulative density function, and we
choose the number of scratches based on a uniform random
number. Starting on a random point, for each scratch, we
draw n consecutive line segments, where n is a random value
between 1 and 4. The line segments have a random length
with a maximum value of 150 pixels and a random angle
(−15° ≤ θ ≤ 15°) between them. This process of creating
scratches is illustrated in Figure 5.

l1 = 10
l2 = 6

l3 = 8

θ1
θ2

Start point Generated scratch segment

Fig. 5. Illustration of the scratch generation process. Given a random start
point, we draw n line segments with random length and random angle between
them. In this example, there are 3 lines segments with lengths l1 = 10, l2 = 6
and l3 = 8.

Figure 6 shows an L3 master fingerprint, the outcome of
this step.

Fig. 6. An L3 master fingerprint. Note the generated pores and scratch.

C. Fingerprint acquisition simulation

Different finger positions on the image sensor produce dis-
tinct rotations and shifts on fingerprint images. Our approach
aims to simulate these acquisition variations.

To measure rotation and shift variations between fingerprints
of the same person from a training set, we extract SIFT [27],
[28] and ORB [29] keypoints, perform an affine alignment
[30] for each keypoint set separately, and select the one with
the highest number of inliers. After, we use the RANSAC
algorithm [31] to obtain a rigid transformation.

We assume that the center of a L3 master fingerprint is the
average of the center of its samples aligned to each other in
the same coordinate system. With this assumption, the average
shift of the samples in relation to the L3 master fingerprint
center is zero in each axis, with standard deviations σx and
σy independent from each other.

However, we cannot measure these displacements in a
real dataset, as we have samples but do not have master
fingerprints. What we can observe is the difference between
two samples. With xi being the x-coordinate of the center of
the i-th image, the expected difference between the center of
two samples i and j, aligned to the same coordinate system,
is given by:

E[(xi − xj)2] = E
[
N (0, σx

2) +N (0, σx
2)
]

= E
[
N (0, 2σx

2)
]

Therefore, if we measure the average square difference dx
between pairs of samples from the same person, σx can be
estimated as:



σx =

√
dx
2

The same can be done independently for σy and σθ
(rotation). To create a seed image, we sample a random
transformation from the normal distribution using σx, σy , and
σθ. After that, we rotate and translate the L3 master fingerprint
before cropping the center region of size 512×512 from the
resulting image. Examples of seed images from the same L3
master fingerprint are shown in Figure 7.

(a) (b) (c)

Fig. 7. Seed images generated from a single L3 master fingerprint, presenting
distinct shifts and rotations.

Before cropping, we also perform a random affine transfor-
mation on L3 master fingerprints. Assuming that (X,V, k) and
(Z,W, k) are two affine spaces, where X and Z are point sets,
we generate a random γ value between -10 and 10, summing
γ to V and W (vector spaces over the field k). This is a
way to simulate non-rigid deformations on fingerprints, which
occur in real images due to distinct finger pressures during
acquisition or optical distortions caused by the acquisition
sensor. Figure 8 illustrates this process.

Fig. 8. Illustration of an affine transformation over an L3 master fingerprint.

Finally, we included a method to randomly drop some pores
in different seed images from a single identity. This is a way of
simulating the process of perspiration. In this work, we used
a pore dropout rate of 3%.

D. CycleGAN-based domain translation

To generate realistic fingerprint images, we learn to map the
seed image domain into the real image domain of the chosen
training database using CycleGAN [22].

CycleGAN is a viable solution for the task of translating two
different domains as it does not require direct pairing between
the training instances. Thus, our seed images do not need to
be perfectly aligned to a real image in the training set.

When creating seed images for training, we seek to balance
the number of real and synthetic samples. To increase the

number of real training samples, besides performing horizontal
flips, we take full real fingerprint images and apply the same
acquisition simulation described in Section II-C (except pore
dropout). Section III-A describes how we create the training
set for this work.

We use the original CycleGAN architecture with 13 residual
blocks [32] and input size 256×256 (seed images are resized
to these dimensions). Besides CycleGAN’s cycle consistency
loss, we use the identity mapping loss [33] as it contains a
regularizing component that encourages the generator to map
samples from the real fingerprint domain to themselves. We
train our model using the Adam optimizer [34] with a learning
rate of 0.0002 for 3 epochs.

At the beginning of the training, the weight for the identity
mapping loss is 0. We iteratively increase the weight up to
0.7×λ, where λ is the weight for the cycle consistency (λ =
10 in this work). We did this because CycleGAN tends to lose
the master fingerprint identity, changing the ridge flow and the
location of the minutiae.

After training, the outcome is a model that can translate any
seed image into a realistic fingerprint, even if it was not seen
during training. Examples of the inference using CycleGAN
are presented in Figure 9.

Fig. 9. CycleGAN inference: seed images (top) and their respective results
(bottom).

III. SYNTHETIC DATABASE CREATION

We decided to replicate the structure of an existing database
to be able to perform a comparison in terms of image realism
and fingerprint recognition performance. To this end, we used
the PolyU database [10], which is divided in two subsets:
DBI and DBII. DBI contains 320×240 images of cropped
fingerprints, while DBII contains 640×480 images of full fin-
gerprints. Both have 148 different identities, and each identity
has 10 images acquired in two sessions (five per session). We
use DBII for training purposes, as we need full fingerprints
to perform the augmentation mentioned in Section II-D. More
details on how we create the training set for CycleGAN are
given in Section III-A. We then use the obtained model to
create synthetic datasets with the same structure as DBI, as
described in Section III-B.



A. CycleGAN training set

We created 296 L3 master fingerprints for training, which
proved to be sufficient to map synthetic images to the real
domain with CycleGAN.

We then flip these master fingerprints horizontally and
perform the acquisition simulation described in Section II-C
to create 5920 seed images. We create additional 5920 seed
images by repeating the acquisition simulation with a larger
cropping larger area (825×825 pixels) to cope with finger-
prints with higher ridge frequency. Finally, we apply random
elastic deformations [35] to the set of seed images to create
11840 distorted images, totaling 23680 training seeds.

For real images, we use the DBII subset of the PolyU
database, which contains 1480 full fingerprint images. First,
we flipped these images horizontally. After, we performed the
acquisition simulation to create 10 samples per image, totaling
29600 real training samples. Table I summarizes the training
images and the augmentation operations.

TABLE I
TRAINING SET IMAGES.

Synthetic Real

Initial images 256 (master fingerprint) 1480
Flip horizontally 592 (master fingerprint) 2960
Shift, crop and rotation (10 variations) 5920 (seed image) 29600
Higher ridge frequency cut 11840 (seed image) -
Elastic deformation [35] 23680 (seed image) -

Total images 23680 29600

B. Inference for database generation

We created five replicas of the PolyU DBI subset to establish
a confidence interval in our recognition experiments. To do
so, we generated 5 sets of 148 master fingerprints. After
simulating fingerprint acquisition, we end up with 1480 seed
images per set, totaling 7400 images for inference.

We then transform these seed images into real images using
our CycleGAN model. To replicate the resolution and aspect
ratio of PolyU DBI, we upscale the inferred images (256×256)
by a factor of 2 using FSRCNN [25], crop the center region
of size 512×384 from the resized images (512×512), and
resize the crops to the PolyU DBI resolution (320×240).
These images, split into five subsets, compose our L3 synthetic
fingerprint (L3-SF) database.

IV. EXPERIMENTAL RESULTS

Section IV-A presents a visual analysis of the L3-SF
database, including a visual comparison with other methods.
Section IV-B presents a fingerprint recognition analysis using
both PolyU DBI and L3-SF databases. A human perception ex-
periment involving 60 volunteers is reported in Section IV-C.

A. Visual analysis

We visually inspected our results to evaluate our method’s
ability to create realistic high-resolution fingerprint images.
We observed that our method creates pores at the indicated

position in the seed image, thus preserving the fingerprint iden-
tity (see Figure 9). Open and closed pores were also observed.
We noticed other L3 traits, such as distinct ridge contours
and incipient ridges, features that increase the reliability of
fingerprint recognition [36], [37]. Figure 10 shows examples
of L3 traits present in the L3-SF database.

(a)

(b) (c)
(d)

Fig. 10. (a) and (b) are open and closed pores in an image of the L3-SF
database. (c) shows an incipient ridge. (d) highlights an unique ridge shape.

A visual comparison between real and our synthetic fin-
gerprints is shown in Figure 12. Note that synthetic images
have different styles similarly to real ones. We selected these
images randomly to provide an unbiased judgment.

Figure 11 shows a visual comparison between fingerprints
generated by the proposed approach, by a publicly available
SFinge demo [16], by a public model of Cao and Jain’s method
[19], and by our implementation of Finger-GAN [18].

L3-SF fingerprints contain different realistic aspects, such
as pores with different sizes and shapes, and ridges with acute
details and texturization. Meanwhile, SFinGe [16] generates
rectangular, single-sized pores and Finger-GAN [18] does not
generate pores at all. Besides, Finger-GAN and Cao and Jain’s
method [19] produce unnatural ridge shapes. Cao and Jain’s
method also produces irregular minutiae patterns and irregular
occlusions.

B. Fingerprint recognition analysis

The goal of this experiment is to compare real and synthetic
images in terms of recognition performance. Ideally, both
should have close results. To carry out this comparison, first
we utilize Bozorth3 [38], which is a minutiae-based fingerprint
matching approach. Our focus was not to get the best matching
accuracy but to compare similarities between the databases.
Bozorth3 proved to be useful in this task. To perform pore-
based fingerprint matching, we utilize Segundo and Lemes’
approach [3]. For these analyses, we use the same protocol
proposed by Liu et al. [39] for PolyU DBI and all L3-
SF versions, as all of them have the same configuration
(148 subjects, 2 sessions, 5 images per subject per session,
320×240 images).

We computed the False Non-Match Rate (FNMR) and the
False Match Rate (FMR) using different threshold values
for both matching approaches in all test databases. With
the obtained FNMR and FMR values, we plot a Receiver
Operating Characteristic (ROC) curve for PolyU DBI. For our
synthetic databases, we plot the average ROC with a 95%
confidence interval. These plots are shown in Figures 13 and
14.
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Fig. 11. Visual comparison between (a) the proposed approach, (b) Cao and Jain [19], (c) Finger-GAN [18] and (d) SFinGe [16].
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Fig. 13. ROC curves from a minutiae-based matcher for PolyU DBI and
L3-SF. For the latter, we show the average ROC and a 95% confidence for
its five subsets.
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Fig. 14. ROC curves from a pore-based matcher for PolyU DBI and L3-SF
database. For the latter, we show the average ROC and a 95% confidence for
its five subsets.
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Fig. 12. Visual comparison between real fingerprints from PolyU DBI (top) and synthetic ones from L3-SF (bottom).

The Equal Error Rate (EER) values for minutiae-based
matching are 23.84% for real images and 28.12% for synthetic
ones. The EER values for pore-based matching are 3.37%
for real images and 3.80% for synthetic ones. These results
validate the L3-SF subsets as realistic databases, as existing
recognition methods were successful without any adjustments.
Besides, the accuracy in both real and synthetic datasets was
very close. The larger gap in minutiae-based matching can
be caused by a difference in minutiae distribution in real and
synthetic images. We leave this investigation as future work.

C. Human Perception Experiment

Humans generate conscious and unconscious inferences
from stimulus on the visual cortex [40]. These inferences
provide a judgment mechanism about different characteristics
in images, where each person perceives and interprets stimuli
in different ways and strategies. Based on this fact, to evaluate
people’s visual perception of real and synthetic images, we
performed an experiment similar to the “real vs. fake” ap-
proach popularly used on Amazon Mechanical Turk (AMT). In
this experiment, we randomly show five PolyU images and five
L3-SF fingerprints to the participants, which annotate the five
images they consider false. Each participant repeats this task
10 times. This methodology forces the participants to identify
visual characteristics and develop strategies to classify the two
image types.

Sixty volunteers participated in this experiment, which
allowed us to analyze the overall human behavior in this
classification task. When participants fail to notice any visual
characteristics that help discriminating real and synthetic im-
ages, their classification accuracy is close to random (50%).
Figure 15 shows the histogram of human classification error.

As can be seen, the average misclassification rate for all par-
ticipants was 45.65%. This result shows that the participants
had difficulties distinguishing the two classes and highlights
the realism of our synthetic fingerprints.
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Fig. 15. Histogram of the human perception experiment. Several participants
had a classification accuracy close to random (50%).

V. CONCLUSIONS

We presented an approach to generate realistic, high-
resolution synthetic fingerprints containing different L3 traits.
We trained a CycleGAN using real fingerprint images from
PolyU and handcrafted seed images to create a model capable
of translating these two image domains while preserving all
identification cues (e.g., ridges, minutiae, pores). Using this
approach, we created the L3-SF database with the same



characteristics of the PolyU DBI. More importantly, the L3-
SF database allows further studies in the field of fingerprint
biometrics without raising privacy-related legal issues. Our
experimental results show that L3-SF images can be used
by existing fingerprint recognition methods without any ad-
justments and achieve similar recognition performance. We
performed a human perception experiment with 60 volunteers,
which evidenced the realism of our synthetic images thanks
to a nearly-random human classification performance. Finally,
we visually compared our results with the best performing
works in the literature to highlight the quality enhancement
over existing works. In future works, we intend to extend
our approach to multiple databases and multiple fingerprint
resolutions (L2 and L3) to investigate the generalization of
our approach to different acquisition styles and support cross-
sensor fingerprint matching research.
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