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Abstract—We present an encoder-decoder neural network to
remove deformations caused by expressions from 3D face images.
It receives a 3D face with or without expressions as input and
outputs its neutral form. Our objective is not to obtain the most
realistic results but to enhance the accuracy of 3D face recognition
systems. To this end, we propose using a recognition-based
loss function during training so that our network can learn to
maintain important identity cues in the output. Qur experiments
using the Bosphorus 3D Face Database show that our approach
successfully reduces the difference between face images from the
same subject affected by different expressions and increases the
gap between intraclass and interclass difference values. They also
show that our synthetic neutral images improved the results of
four different well-known face recognition methods.

Index Terms—Deep Learning, Facial Recognition, 3D Images

I. INTRODUCTION

Faces are a widely used source of information for recog-
nizing individuals, either in a real or virtual context. This
process is non-intrusive and can be used in a variety of
ways, from a local system that uses controlled acquisition to
large-scale security systems [1]. Recognition can be done by
many different methods [2]-[5] and could use 2D and/or 3D
images. Regardless of advantages and disadvantages, all these
image modalities share a common problem: humans use facial
expressions to communicate, which changes the facial shape
making it different from its respective neutral version [6]. This
can cause a recognition system to consider two face images
from different individuals more similar than two images of the
same person with different expressions.

The most straightforward way to address this problem is to
focus on face regions less affected by expressions, such as the
area around the eyes in 2D images [7] and around the nose
in 3D images [8], [9]. A generalization of this idea assumes
that a small neighborhood around any point of the face is
locally rigid and less prone to expression variations, which led
to the creation of part-based matching approaches [10], [11].
Creating expression invariant representations for 3D images is
an alternative approach which found some success [12], [13].

Dealing with expressions means modeling deformations to
an extent that allows imitating and/or removing them. Expres-
sion simulation is better fitted to controlled systems that ensure
enrolled faces are neutral. This way, an enrolled face can be
deformed according to a precomputed model to match an input
face with expression variations [14]. Meanwhile, expression
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removal does not have such requirement as it can eliminate
deformations caused by facial expressions from all images
before matching them to each other. This is a huge advantage
over the former option when considering an identification
scenario, in which a probe image is matched against multiple
enrolled images, because a gallery can be preprocessed for
expression removal but not for expression simulation.

As expressions are mostly shape changes, 3D images pio-
neered removal studies. Pan et al. [15] learned how to infer
the expression residue of a non-neutral face using Radial Basis
Function regression model. With this approach, they can later
subtract this residue from the input face to reconstruct its
neutral form. This second step can be eliminated by modeling
both identity shape and expression residue together with a
deformable model based on Active Shape Models [16].

With the rise of Convolutional Neural Networks (CNN),
recent studies have successfully used generative adversarial
learning to obtain realistic results for this task using 2D images
as well [17]-[19]. Despite that, latest CNN-based works using
3D images focus on the expression recognition task [20], [21]
but not on face recognition under expression variations.

In this work, we aim to use CNNs to remove expressions
from 3D faces specifically for recognition purposes. We do
not require realistic images as long as recognition accuracy
improves. To achieve this objective, we:

o describe a neural network model - adapted from Badri-

narayanan et al. [22] - to map non-neutral 3D face images
to their correspondent neutral versions (Section II-C);

e propose, as our main contribution, using a recognition-
based loss function to regularize the training into main-
taining or improving discriminability after expression
removal (Section II-C);

« compare the effect of our expression removal on shape
similarity with the state-of-the-art (Section III-A);

« test our method with established face recognition methods
to show its potential to improve them (Section III-B).

II. METHODOLOGY

We propose to use a CNN to, given a 3D face image
with or without expressions, output the individual’s neutral
face. Considering the great advances in machine learning
for computer vision using 2D representations [22]-[25], we
decided to avoid volumetric representations and preferred to
use 2D orthogonal projection images of 3D faces. This choice
also brings a second benefit: a considerable reduction in the
number of model parameters.



To accomplish the aforementioned objective, we first nor-
malize the pose of the 3D face by aligning it to an average
face model. Then, we project it to 2D space and use our
neural network to remove any deformations caused by facial
expressions. The output 2D projection can be easily reverted to
a 3D mesh if necessary. This process is illustrated in Figure 1.
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Fig. 1. Proposed pipeline for facial expression removal. Input 3D faces
are converted to 2D projections, which are then fed to an encoder-decoder
network to produce their correspondent neutral images. The output image can
be mapped back to 3D space by using the inverse projection transformation.

A. Acquisition

We used the Bosphorus 3D Face Database [26] (hereon
Bosphorus) as a source of 3D faces in this work. It contains
3D images of faces from 105 individuals and an average of
36,000 points, with 3D coordinates in milimeters. We used
nearly frontal faces only, totaling 299 neutral faces and 2189
faces with expression variations.

To perform a fair evaluation of our approach, we split this
dataset into training, validation and test subsets in a subject-
independent manner (i.e. no individual has images in more
than one subset). To do so, we randomly selected half of the
available individuals for training (53 people), one-fourth for
validation (26 people) and one-fourth for test (26 people).

B. Pose normalization and 2D projection

Our normalization process requires an average face model,
which is created using all neutral faces in the training set.
These images are aligned to each other using the Iterative
Closest Points (ICP) algorithm [27], and corresponding points
are averaged to create the final model (Figure 2). Lastly, the
center of mass of the resulting average model is shifted to the
origin.
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Fig. 2. Average face model created by aligning all neutral faces in the training
subset to each other and averaging corresponding points.

To normalize the pose of an input 3D face, we align it
to the average face model with ICP and then project it to
a 128 x 128 orthogonal projection image by applying the
following equations to every 3D point x;, y;, 2;:

= [64 — i (D

c= |64+ x;| (2)
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where 7 and ¢ are the row and column of the pixel where
the point is being projected, |a] is the nearest integer to a,
and [ is the projection image. Finally, we fill holes with the
values of neighboring pixels. Figure 3 shows an example of
the intermediate steps of this process and its result.
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Fig. 3. Orthogonal projection of a 3D face into a 2D image. An input 3D face
is aligned to a precomputed average model. After that, y and x coordinates
become row and column while the z axis becomes the pixel intensity.

C. Neural Network Model

Our network is an adaptation of the architecture proposed
by Badrinarayanan et al. [22], consisting of a convolutional
encoder-decoder to regress, from a 2D orthogonal projection
of the input 3D face, a 2D orthogonal projection of the same
face without facial expressions.

The encoder’s input is the 2D orthogonal projection image
created by the previous step (Section II-B). Our encoder
consists of two blocks of two convolutional layers followed
by max-pooling, and then three convolutional layers, all using
the ReL.U activation function. The encoder output is a feature
vector in latent space of size 4 x 4 x 64. When compared to
Badrinarayanan et al.’s [22] architecture, the last convolutional
layer in our encoder was originally a max-pooling layer.

The decoder is symmetrical to the encoder, replacing con-
volutions with transposed convolutions and max-pooling with
up-sampling. The other difference to Badrinarayanan et al.’s
architecture [22] is the absence of an activation function in
the last layer of our network. The complete description of our
architecture can be seen in Table I.

TABLE I
NEURAL NETWORK ARCHITECTURE FOR FACIAL EXPRESSION REMOVAL.
# Type Input Filter Stride Output
1 Convolutional + ReLU 128 X128 X 1 TXTX1X64 2 64 X 64 X 64
2 Convolutional + ReLU 64 X 64 X 64 7TX7X64 %64 1 64 X 64 X 64
3 Max Pooling 64 X 64 X 64 2X2 2 32X32x64
3 4 Convolutional + ReL.U 32X 32X 64 7 X7 X64X64 2 16X 16 X 64
S 5 Convolutional + ReLU 16X 16 X 64 TXTX64X64 1 16X 16 X 64
5] 6 Max Pooling 16 X 16 X 64 2x2 2 8 X8 X 64
7 Convolutional + ReLU 8 X 8x64 TX7X64 %64 2 4Xx4x64
8 Convolutional + ReLU 4X4x64 TX7X64X64 1 4Xx4x64
9 Convolutional + ReLU 4X4x64 7 X7 X64X64 1 4X4x64
10 Deconvolutional + ReLU 4x4x64 7T X7 X 64 %64 1 4x4x64
11 Deconvolutional + ReLU 4Xx4x64 7 X7 X64X64 1 4X4x64
12 Deconvolutional + ReLU 4x4x64 7TXTX64X64 2 8x8x64
5 13 Upsampling 8X8x64 2Xx2 2 16X 16 X 64
8 14 Deconvolutional + ReLU 16X 16 X 64 TX7X64 %64 1 16 X 16 X 64
A 15 Deconvolutional + ReLU 16X 16 X 64 TX7X64 %64 2 32Xx32x64
16 Upsampling 32X 32X 64 2x2 2 64X 64 X 64
17 Deconvolutional + ReLU 64X 64 X 64 TXTX64X64 1 64X 64 X 64
18 Deconvolutional 64X 64 X 64 TXTX64X1 2 128 X 128 X 1




With that in mind, we state our learning problem as opti-
mizing the network’s parameters by minimizing the Ly loss
between the network output y and the ground truth y. We also
considered an alternative loss function to help preserving the
identity of an input image. To this end, we used the Euclidean
distance between CNN descriptors extracted by a state-of-
the-art 2D face recognition approach, a publicly available
implementation inspired by Facenet [4]. For simplicity, we
hereon refer to this CNN as Color-Facenet and to this loss
scheme as recognition loss. The recognition loss is defined as:

Ly =A[Ih(y) = R + (7)) = h(x)]] )

where h(a) is the Color-Facenet descriptor for a. To measure
the benefits of the recognition loss, we evaluated two versions
of the proposed expression removal network:

e Net A: optimized using Lg loss only;

o Net B: optimized alternating Lo loss with the £, loss.

Figure 4 illustrates the difference between Net A and Net B.

Network B I
J// \\
{ Recog.
|
v Loss
o~ \\__ _// .
B / — \,\\}’ B
e TN
f \Y / N
[ Feature Vector * Distance € Feature Vector * Distance [ Feature Vector
I A\ .-" —_— & \ ,"
'\.__,'/ \__‘_,/
Color Color Color
Facenet Facenet Facenet
R e -

———

P
{Removal

—
FL2N
» = -«
\ Loss /

—_

>
Network

Network A

Fig. 4. Optimization strategies for Net A and Net B.

It is important to mention that the weights of Color-Facenet
are not updated during training. We are interested in using
its gradient as a surrogate for the gradient of face recognition
in general, aiming with this to regularize our objective into
keeping or improving face recognition when using the outputs
of our method. Although Color-Facenet was trained only on
2D images, it is known that such models generalize reasonably
well to other face recognition modalities [28].

We use the distance between input and output image de-
scriptors, respectively h(x) and h(y), as well as between
output and ground truth image descriptors, respectively h(¥y)
and h(y), to take identity cues from input and ground truth
images into account. 7y is a hyperparameter that controls to
which of the descriptors, input or ground truth, we would
like the output descriptor to be closer. Increasing  prioritizes
expressionless face recognition, and we empirically set v = 3.

For both versions, the training phase was divided into
two parts: autoencoder-based pre-training and encoder-decoder
training for expression removal.

1) Autoencoder-based pre-training: learns an identity map
for neutral human faces in orthogonal projection images. It
uses the same image as input and expected output, so it learns
how to perform dimensionality reduction on the input space
and then to reconstruct this input minimizing the error. It is
an easier problem when compared to the expression removal
problem, but its domain is close enough to serve as a good
initialization for the next training part [29]. We optimized the
Ly loss with the Adam optimizer [30], learning rate with
exponential decay from 1072 to 10~° and batches of 256
samples for 50 epochs. These parameters were empirically
defined based on the performance in the validation set. The
same initialization process was used for Net A and Net B.

2) Encoder-decoder training: uses every non-neutral, neu-
tral pair of faces in the training set to train our expression
removal net. For Net A we use the same training configuration
of the pre-training stage, except by the number of epochs,
which is now 3000. For Net B, we intercalate training batches
using the Lo and £, losses in a proportion of four to one.
Besides also using 3000 epochs, we use a learning rate
between 107° to 10~7 in batches that use the £, loss.

III. EXPERIMENTS

We ran our experiments in an Intel 17-6700k 4GHz machine
with 32GB of RAM and a single NVIDIA Titan X Pascal
12GB GPU. Our implementation uses the Point Cloud [31],
OpenCV [32], and Tensorflow [33] libraries.

We conducted two experiments in our empirical evaluation
of the proposed approach. First, we provide a quantitative
analysis of the stability of our approach, comparing with
the state-of-the-art, in Section III-A. Finally, we compare
the performance of four face recognition methods before and
after using the proposed work for expression removal in Sec-
tion III-B. By doing that, we were able to establish a baseline
performance for each method and then to quantitatively assess
our method’s effect on face recognition.

A. Evaluation of Expression Removal Stability

A stable expression removal approach should consistently
increase intraclass similarity and create a larger separation
between intraclass and interclass similarity distributions. To
quantify this stability, we used the Root Mean Squared Error
(RMSE) between pairs of raw images. The closer to zero the
RMSE is, more similar these images will be. We computed
the RMSE for every pair of neutral and non-neutral faces
in the test set and computed the average RMSE value for
intraclass and interclass combinations. This procedure was
repeated for the original images and their processed versions
using Net A and Net B, and the obtained values are presented
in Table II. As expected, the average RMSE for intraclass
combinations is smaller than interclass combinations in all
cases. After expression removal, both interclass and interclass
RMSE values are reduced, meaning that images from the same
person are getting more similar but images from different
individuals are getting closer too. However, the gap between
intraclass and interclass values increases, which shows that



removing expressions helps discriminating them. Figure 5
visually illustrates this effect.

TABLE 11
AVERAGE RMSE VALUES AND THEIR STANDARD DEVIATION

Intraclass Interclass
Original | 0.046176 £+ 0.011230 | 0.072338 4+ 0.011539
Net A 0.024199 4 0.008934 | 0.059927 + 0.014833
Net B 0.024082 4+ 0.008785 | 0.059696 + 0.014278

When compared to the state-of-the-art, our approach was
able to reduce the average intraclass RMSE by 47.8%, similar
to the reduction of 43.6% achieved by Pan er al. [15]. Although
they use a different database, BU-3DFE [34], it is very
similar to the subset from BOSPHORUS that was used in this
work (BU-3DFE vs. our BOSPHORUS subset: 100 vs. 105
individuals; 1 vs. 2.84 neutral faces per person; 24 vs. 20.8
non-neutral faces per person; different expression intensities
in both). The main difference is that we use fixed training and
test sets, while Pan et al. follow a leave-one-out protocol and
use all but one person for training and the remaining person
for testing. They repeat this experiment (leaving one person
out at a time) and compute the average result. This means we
achieve comparable results using a 2:1 train:test ratio while
Pan et al. used a 99:1 ratio.

These results suggest that a face recognition system could
benefit from our approach, so we continued our experiments
with an evaluation of our method’s impact on different face
recognition systems in Section III-B.

B. Expression Removal’s Effect on Face Recognition

To evaluate the effect of our approach for expression re-
moval over face recognition, we investigated the results of

four different methods: Eigenfaces [2], Fisherfaces [3], Local
Binary Pattern Histograms (LBPH) [5] and Color-Facenet [4].
Eigenfaces and Fisherfaces were trained using only neutral
faces from the training set. By doing so, they represent a
recognition system that cannot handle expression variations.
The validation set was used to find the number of eigenvectors
with the best recognition performance, 30. Thus, each face in
the test set was later described by a 30-dimensional vector
in both cases. LBPH and Color-Facenet did not require any
training, and were used to extract 4096- and 128-dimensional
descriptors from a test face, respectively. LBPH is known for
being robust against expression variations [35]. The Color-
Facenet model was trained using 2D face images, but could
be used to extract features on 3D images as well [28] and helps
us checking if our method improves a CNN’s performance.

Each recognition experiment was repeated three times, as in
Section III-A, one using the original images and the other two
using these images after being processed by Net A and Net B.
We remark that even neutral faces need to be processed by the
nets in order to obtain the results presented in Figure 5.

For each combination of recognition approach and input
data, we performed two experiments: an All versus All match-
ing of images in the test subset, whose results were reported
as Receiver Operating Characteristic (ROC) curves in Figure 6
and Equal Error Rate (EER) values in Table III; and a Rank-
N identification using one or two neutral images for each
individual to form a gallery and all non-neutral images as
probe samples, whose results were reported as Cumulative
Match Characteristic (CMC) curves in Figure 7. The former
experiment evaluates how well genuine and impostor matches
can be distinguished, while the latter tells how easily the
identity of a probe can be retrieved in a controlled scenario in
which facial expressions are not allowed during enrollment.

Overall, the benefit of removing expressions with either

(@

Fig. 5. Results to illustrate the applicability of our expression removal in face recognition. The first three rows show the comparison of pairs images from
the same person in different scenarios: neutral vs. neutral, neutral vs. non-neutral and non-neutral vs. non-neutral. The last row shows a neutral vs. neutral
comparison between images from different subjects. The original images are shown in (a) and (b), and their difference is (c). (d) and (e) shown results of
Net A for (a) and (b), and their difference is (f). Finally, outputs from Net B for (a) and (b) are shown in (g) and (h) and their difference in (i). Areas with
large difference are red and areas with small difference are blue. A logarithmic scale was used to magnify those differences.
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Fig. 6. ROC curves for verification results using (a) Eigenfaces, (b) Fisherfaces, (c) LBPH, and (d) Color-Facenet. FRR stands for False Rejection Rate and

FAR stands for False Acceptance Rate.
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Fig. 7. CMC curves for identification results using (a) Eigenfaces, (b) Fisherfaces, (¢) LBPH, and (d) Color-Facenet. Solid lines are obtained when there is
one image per person in the gallery, and dashed lines when there are two images per person.

Net A or Net B is very clear in comparison to the results
for unprocessed images. Rank-1 and EER were improved
in all cases, with a reasonable advantage of Net B over
Net A in most cases. This shows that removing expressions
improves the accuracy of a recognition system. We observe
this even when the recognition method for which the network
was optimized is different from the one being used, showing
that our approach of using a state-of-the-art neural network
as a surrogate gradient for face recognition is promising.
Nevertheless, we can make other observations based on the
results presented in Figures 6 and 7 and Table III.

1) We can see that Eigenfaces outperforms Fisherfaces
for the original image set but the opposite happens
when facial expressions are removed by Net B. Both
methods were trained with neutral images only. Fisher-
faces probably became too specialized to this domain
to handle expression variations. Meanwhile, Eigenfaces
seeks to represent the main components of the training
set, which helped it generalize better to a different
domain. Fisherfaces’ discriminative power is restored
on expression removed images, which indicates that its
training domain (neutral faces only) was consistently

TABLE III
EER CONSIDERING DIFFERENT GROUPS OF GENUINE COMPARISONS: ALL VERSUS ALL, NEUTRAL VERSUS NON-NEUTRAL AND NON-NEUTRAL
VERSUS NON-NEUTRAL IMAGES. THE SET OF IMPOSTOR COMPARISONS IS ALWAYS THE SAME (ALL VERSUS ALL).

Method All vs. All Neutral vs. Non-Neutral Non-Neutral vs. Non-Neutral
Net A Net B Original Net A Net B Original Net A Net B Original
PCA 0.116708 | 0.109266 | 0.133388 | 0.121929 | 0.116014 | 0.123910 | 0.128130 | 0.120554 | 0.192649
LDA 0.118026 | 0.094660 | 0.280848 | 0.122854 | 0.099432 | 0.280226 | 0.112079 | 0.098947 | 0.377257
LBPH 0.072148 | 0.058066 | 0.229458 | 0.075262 | 0.061903 | 0.230442 | 0.081411 | 0.066287 | 0.278878
Color-Facenet | 0.169345 | 0.146602 | 0.188003 | 0.178849 | 0.152614 | 0.187543 | 0.174687 | 0.158206 | 0.255858




reinstated by the use of our method.

2) InFigure 7, we see that the Rank-N increases for original
images when the gallery has two images per person, but
not for images processed by Net A or Net B. Adding
multiple images of the same person to the gallery is
only useful when there is variation between them [36].
This suggests that even neutral faces get closer to each
other when processed by our networks and that our
method can possibly reduce the enrollment effort in face
recognition systems.

3) The small difference between non-neutral versus neutral
and non-neutral versus non-neutral matches in Table III
for Net A and Net B indicates that there is no need to
control user expression during enrollment in recognition
systems that use our method.

4) There is an increase in accuracy even when methods
that are robust to expressions variations are evaluated,
showing that the benefits of expression removal are not
limited to expressionless methods.

5) 3D recognition results using Color-Facenet were not as
high as other methods, as expected from a model trained
with color images. They show, however, that our method
can enhance the accuracy of CNN-based systems.

IV. CONCLUSION AND FUTURE WORKS

We used an encoder-decoder neural network for facial
expression removal in 3D images aiming to improve the
accuracy of recognition systems. Our main contribution is
the use of a recognition system to guide the training process
to maintain identity cues in the output neutral image, and
we show the advantages of the proposed approach through
qualitative and quantitative evaluations. Our approach was able
to reduce the RMSE between a neutral and a non-neutral
image roughly by half, which is comparable to the state-of-the-
art while requiring much less training data. It also increases
the separation between intraclass and interclass RMSE values.
When used for recognition purposes, images processed by our
approach improved the accuracy of four different face recog-
nition systems, showing that it is system agnostic. Finally, we
observed that our approach reduces the enrollment effort in a
recognition system, as it requires fewer gallery samples and
removes the need to impose neutral expressions in enrollment.

As a future work, we intend to combine multiple 3D face
datasets in order to train a 3D recognition CNN to be used
as a better estimate for the recognition loss. We also intend
to investigate if more realistic images obtained by GANs [37]
can further improve the recognition results.
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