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Abstract—The geospatial land recognition is often cast as a
local-region based classification problem. We show in this work,
that prior knowledge, in terms of global semantic relationships
among detected regions, allows us to leverage semantics and
visual features to enhance land use classification in aerial
imagery. To this end, we first estimate the top-k labels for
each region using an ensemble of CNNs called Hydra. Twelve
different models based on two state-of-the-art CNN architectures,
ResNet and DenseNet, compose this ensemble. Then, we use
Grenander’s canonical pattern theory formalism coupled with the
common-sense knowledge base, ConceptNet, to impose context
constraints on the labels obtained by deep learning algorithms.
These constraints are captured in a multi-graph representation
involving generators and bonds with a flexible topology, unlike
an MRF or Bayesian networks, which have fixed structures.
Minimizing the energy of this graph representation results in
a graphical representation of the semantics in the given image.
We show our results on the recent fMoW challenge dataset. It
consists of 1,047,691 images with 62 different classes of land
use, plus a false detection category. The biggest improvement in
performance with the use of semantics was for false detections.
Other categories with significantly improved performance were:
zoo, nuclear power plant, park, police station, and space facility.
For the subset of fMow images with multiple bounding boxes
the accuracy is 72.79% without semantics and 74.06% with
semantics. Overall, without semantic context, the classification
performance was 77.04%. With semantics, it reached 77.98%.
Considering that less than 20% of the dataset contained more
than one ROI for context, this is a significant improvement that
shows the promise of the proposed approach.

Index Terms—Remote sensing, convolutional neural networks,
pattern theory

I. INTRODUCTION

After a natural disaster such as an earthquake or a hurricane,
there is a need for damage assessment for humanitarian
assistance purposes. Leveraging aerial imagery can assist in
informed search-rescue and rebuilding effort. Other emerging
uses of satellite images are in urban design and transportation
management in smart cities. These new application areas,
coupled with ready availability of high quality satellite images
is leading a resurgence of interest in computer algorithms for
geospatial datasets, consisting of satellite images, metadata,
and temporal views. Computer vision challenges include the
ability to overcome occlusions, varying perspectives, fine-
grained discrimination, and class imbalance. We briefly discuss

the latest datasets, their objectives and mention the best
performing solutions for conventional understanding of remote
sensing applications.

SpaceNet [1] is a dataset used for a series of challenges
with the purpose of developing the algorithms to extract
buildings footprints and also road networks automatically.
Top performing solutions implemented different image seg-
mentation algorithms. For example, an ensemble of three U-
Net models [2] provided the best performance on extracting
buildings footprints. U-Net is a convolutional neural network
(CNN) architecture originally proposed for biomedical image
segmentation that was later applied to many other domains [3].

In the xView challenge dataset [4], the goal was to detect
and classify objects in satellite imagery. This dataset covers
the following remote sensing problems: large image size, low
interclass variability, occlusion from clouds, constrained com-
putational resources and unbalanced classes. A top perform-
ing method [5] utilizes five Single Shot MultiBox Detector
(SSD) [6] models, whose detections are merged by an adapted
version of the non-maximum suppression (NMS) algorithm.
SSD is an end-to-end CNN architecture for general object
detection. It generates region proposals with labels from multi-
scale feature maps and filter out duplicates using NMS.

In the IARPA Functional Map of the World (fMoW) [7]
competition, participants had to develop machine learning
algorithms to classify the land use of given regions of interest
(ROI) in satellite images. Figure 1 illustrates the fMoW
task. The top five participants employed ensembles of CNN
leveraging visual and metadata information.

In this work, our goal is to use semantic relationships among
multiple ROIs and investigate if this information can be used to
enhance land use classification in satellite images. To this end,
fMoW emerges as an appropriate benchmark, as it provides a
straightforward scenario to assess the relevance of semantics.
Almost 20% of its 53,473 testing images have more than one
ROI that allow analyzing the semantic associations between
them.

As our main contribution, we present an approach that
combines Grenander’s canonical pattern theory formalism with
the common-sense knowledge base, ConceptNet, to impose
context constraints on the ROI labels obtained by one of the



Fig. 1: Image sample from fMoW dataset. The fMoW task
consists in, given a satellite image with one or more regions
of interest, classify these regions as one of the 62 given classes
(e.g. parking lot, shopping mall, crop field) or as a false
detection.

fMoW winners’ solutions, Hydra [8]. In this approach, the
energy of a multi-graph representation involving generators
and bonds with a flexible topology is minimized taking these
constraints into account, resulting in a graphical representation
of the semantics in a given image and ROI labels with the
highest semantic agreement.

II. RELATED WORK

The ability to use context among categories and or objects
have shown to improve accuracies when dealing with object
detection and classification problems because items generally
appear together regularly in their natural environments [9].
Relationships among objects are based on scale, semantics or
spatially. However, current deep learning paradigms focus on
visual features and seldom take into account the environment
or surrounding objects. The reason is that incorporating or
modeling relations into learning algorithms is difficult.

Contextual modeling is either done at the feature level
from feature maps or be formulated graphically using pre-
dicted labels. Examples of feature level strategies include
CoupleNet [10], attention to context convolution neural net-
work [11], spatial memory network [12] and most recently
with state-of-art results, relations networks [13]. Alternatively,
structure inference networks [14], Conditional random fields
(CRF) for object recognition [15] and Graph-RCNN [16] are
graphical-based.

Relation networks [13] propose an object relations module
that leverages appearance features and geometry. It is easily
integrable into many state-of-the-art object detectors today and
is lightweight. Therefore there are no additional computational

needs. Relation networks improve object detection and reduce
the number of similar proposals.

In order to model context graphically to make use of
spatial and visual features, usually, an object detector generates
ROIs. A following non-maximum supression (NMS) algorithm
reduces the number of duplicate ROIs. Each remaining ROI
represents a node and the edges the relationship of object
pairs. Yang et al. [16] follow this path using a region proposal
network, Faster-RCNN, to localize ROIs in an image. Since
the number of edges produced would be notably large, a
relatedness score learned from the distribution of object co-
occurrence is used to prune edges. The result is a sparse graph
that becomes the input of an attentional graph convolutional
network, leveraging contextual information from the entire
scene.

Traditionally graphical topologies used to illustrate rela-
tions, such as CRFs or Bayesian Networks, are generated
based on predefined set of rules and are not interchangeable.
Hence the subtle variability of scenes or objects may not
get captured or even observed. In video captioning, activity
and action recognition are so challenging that attempting to
generate a graph to cover every instance is not feasible.
Therefore, de Souza et al. [17] propose a flexible framework
that is discussed further in Section III while Aakur et al. [18]
introduce the use of external information to define relation-
ships.

Employing external knowledge to determine associations is
advantageous because it is freely accessible and rich in the
observable principles of the natural environment. A source
of external knowledge is usually a graph representation of
generally agreed upon facts and how they are expressed in
language naturally and logically. ConceptNet, BabelNet, and
WordNet are a few of such semantic graphs that tend to be
very large.

III. PROPOSED APPROACH

Fig. 2: Diagram of the proposed framework.

We propose an approach to process satellite imagery from
the fMoW dataset, with the goal of categorizing land use in
ROIs from satellite images. As illustrated in Figure 2, it con-
sists of an ensemble of CNNs – Hydra [8] – and Grenander’s



Fig. 3: Diagram of the pattern theory module. A graph topology representing semantic relationships is created using variations
of top-10 labels for each bounding box and association weights from ConceptNet.

general pattern theory framework. Hydra produces the top-
k labels for each ROI in an image (in this work, k = 10).
The pattern theory module uses ConceptNet to generate a
graphical structure representing semantic relationships among
ROIs which is then used to select the most adequate labels
for them. In the following sections, we will describe this
framework in further details.

A. Dataset

The fMow challenge released a remote sensing dataset con-
sisting of 1,047,691 satellite images, metadata, and temporal
views. Each sample has a high-resolution pan-sharpened image
and a low-resolution multispectral image. ROIs are represented
by bounding boxes, and every bounding box in an image
belongs to one of the 62 possible classes or is a false detection.
A description of the training data provided is in Table I.

TABLE I: Number of images and ROIs in the fMow dataset.

# of images # of boxes # of distinct boxes

Train 363,572 363,572 83,412
Validation 53,041 63,422 12,006
Test 53,473 76,998 16,948

Total 470,086 503,982 112,366

The test set contains 53,473 images, with 82.60% of them
having a single ROI, 4.96% two ROIs, 5.66% three ROIs and
6.78% with four or more ROIs. Is important to mention that

we are only able to extract semantic relationships from images
with more than one ROI.

B. Ensemble of CNNs for ROI classification

Hydra is a framework to create ensembles of CNNs
using two popular architectures, Residual Networks
(ResNet) [19] and Densely Connected Convolutional
Networks (DenseNet) [20]. Both networks are initialized
with ImageNet [21] weights, then partially optimized for
a few epochs using the fMoW training set. The updated
weights are used to initialize several copies of these networks,
which are referred to as the heads of the Hydra. Each head
is then optimized for a few more epochs with a different
configuration regarding image format, class weights, and data
augmentation technique. During test, each head generates
a vector of score values that show the likelihood of a ROI
belonging to all existing classes. The results of all heads are
fused by a simple sum, and then the top-k classes and their
respective scores are passed to the pattern theory module.

C. Modeling Semantic Relationships

Discovering latent patterns to understand the basic concepts
of this patterns is how we model context. The patterns in-
clude basic independent states, co-occurrence and inference
functions. We utilized Grenander’s canonical pattern theory
formalism together with ConceptNet to represent semantic
relationships among the categories of the fMoW dataset, as



shown in Fig 3. Below we will briefly discuss the ConceptNet
and Grenander’s pattern theory structure.

1) ConceptNet: ConceptNet, a semantic network relational
graph, is a graphical abstraction of knowledge of the real
world that is possessed by all people. This information mostly
relies on conventional human experience that involves social,
physical, temporal, psychological, spatial characteristics of
everyday life. The knowledge is crowd-sourced and data mined
from Wikipedia, Wiktionary, DBpedia, Freebase and WordNet.
This contextual graph consists of concepts that are texts
which will represent categories in our solution and assertions,
relationships between the classes. It is intuitively a hypergraph
where the nodes are objects classes, and edges are relations.
There are 12.5 million edges, signifying 8.7 million statements
connecting 3.9 million concepts. Associations between two
concepts include HasProperty, IsA, and RelatedTo and are
quantifiable by weight values. Figure 4 illustrates some of
these associations in the context of the fMoW dataset.

Fig. 4: A small subset of the semantic graph from ConceptNet
in which nodes represent fMoW classes and are directionally
connected by the RelatedTo association weight values.

2) Pattern Theory: We used the Grenander’s pattern theory
framework to encounter semantic relationships for image clas-
sification purposes. In this framework, a generator g ∈ G is
the basic unit of information. It may represent a concept (i.e.
one of the fMoW classes) or a feature (i.e. the top-k classes
and the respective scores for a ROI in the input image). The
generator space G is the finite set of all the possible generators
that can exist.

A generator g has a finite set of connectors, called bonds,
and each bond is expressed as βl(g) where l is a unique
identifier. Figure 5 illustrates these concepts.

There are different types of bonds, namely semantic and
support. A support bond connects a generator gi that represents
an fMoW class to another generator gj that represents a feature
for a specific ROI. The bond value αsupp in this case is given
by:

αsupp(β
′(gi), β

′′(gj)) = f(gi, gj) (1)

Fig. 5: Generators and bonds. A bond that is not connecting
two generators is considered open, otherwise it is closed.

where f(.) is the Hydra’s confidence score for gi’s class in
gj’s ROI. Semantic bonds represent the relationships between
concept generators and are directional. This type of bond
connects two generators gi and gj that represent two different
fMoW classes. Its value αsem is given by:

αsem(β′(gi), β
′′j(gj)) = tanh(φ(gi, gj)) (2)

where φ(.) is the RelatedTo weight value from ConceptNet.
The tanh function normalizes the output of φ to the range
from −1 to 1.

A set of generators joined together using bonds to represent
their semantic relationships form a graph σ ∈ Σ, with Σ being
the collection of all finitely possible graph configurations.
More specifically, a graph configuration c with n generators
can be represented as:

c = σ(g1, g2, g3, ..., gn) (3)

A visual representation of one configuration c is shown in
Figure 6.

Fig. 6: Example of a configuration c with generators for fMoW
categories in an image with multiple ROIs.

Finding the right configuration c for a set of ROIs in the
input image can be seen as a search problem in which we
maximize the probability of the graph topology:

P (c) ∝ e−E(c) (4)



Fig. 7: Region classification performance gain by using semantical relationships: the classification of more than 75% of the
categories were improved by using the region context.

To do so, we have to minimize the energy function E(c). Low
energy suggests that the concepts in the configuration have
high associativity with each other based on their semantic
relations. Given a configuration with bonds connecting a
collection of generators, the energy function is the sum of
all the bond values:

E(c)=−
∑
αsupp(β

′(gi),β
′′(gj))+αsem(β′(gi),β

′′(gj))+Q(c) (5)

where Q(c) is the cost function of the structure. It is used to
ensure that degenerate cases, like configurations with uncon-
nected generators, do not happen and is calculated as follows:

Q(c) = γ
∑
g∈G

∑
β′∈g

[D(β′(g))] (6)

with D(.) returning 1 if β′ is open, and 0 otherwise. The
parameter γ controls the importance degenerate cases have on
the quality of the interpretation.

Since the number of generators and bonds is mutable, the
search space can be exponential. We use a simulated annealing
process as inference with an efficient Markov Chain Monte
Carlo process for guiding the search process. It is an efficient
sampling technique, and sampled configurations are either
rejected or accepted based on their respective energy scores.
In the end, the configuration with the lowest energy is chosen.

Its generators are then used to obtain the final labels for the
ROIs of the input image.

IV. RESULTS AND DISCUSSION

The quantitative criteria used by the Functional Map of
the World challenge to rank its competitors was a weighted
average of the F -measure [7] for each class. As shown in
Table II, the semantical relationships help to increased the
classification accuracy in nearly 1%, from 77.04% to 77.98%.
Although the gain does not appear to be significant in absolute
numbers, is important to note that 49 out of 62 classes had an
increase of performance, as can be seen in Figure 7. We need
to remember that approximately 80% of the fMoW test images
have a single ROI and cannot be analyzed through semantic
relationships, making this 1% gain much more noteworthy.

Furthermore when we computed the effect of using se-
mantics on the subset of images with multiple ROIs, there
were improvements in accuracies of approximately 1.25%
i.e., weighted F-measure score without semantics was 72.79%
and with Semantics 74.06% while for unweighted score was,
without semantics 73.59 % and with semantics 74.78%

The correction of mis-classifications primarily occurred in
images with multiple bounding boxes. Hydra with semantics
discriminated well between the background class, and the other



62 classes. This is attributed to the fact that in the test set
there were 6000 distinct bounding boxes and 2800 were false
detections (see Figure 8).

(a) Groundtruth.

Shopping mall Road bridge

False detection

Parking lot

(b) Hydra without and with semantics relationships.

W/o semantics: Shopping mall
With semantics: Shopping mall

W/o semantics: False detection
With semantics: Road brigde

W/o semantics: False detection
With semantics: False detection

W/o semantics: False detection
With semantics: False detection

Fig. 8: Land classification: (a) image sample from Functional
Map of the World Challenge with groundtruth regions and
labels; (b) region classification without semantical context and
with semantical context.

V. CONCLUSION AND FUTURE WORK

Leveraging semantic relationships among the object classes
from external knowledge leads to an improvement in classifi-
cation accuracies, particularly in images with multiple bound-
ing boxes. Our approach in this instance reduces the false
detections. In the future, we propose incorporating pattern

TABLE II: Classification accuracies for each of the 62 cate-
gories in the IARPA Functional Map of the World dataset, as
captured by the category weighted F1 scores.

Categories w/o Semantics with semantics
airport 0.9130 0.9197

airport hangar 0.7453 0.7529
airport terminal 0.7913 0.7975
amusement park 0.8939 0.9082

aquaculture 0.8462 0.8462
archaeological site 0.7054 0.7313

barn 0.7715 0.7768
border checkpoint 0.5814 0.5977

burial site 0.9036 0.9126
car dealership 0.8475 0.8531

construction site 0.4841 0.4815
crop field 0.9529 0.9551

dam 0.9162 0.9218
debris or rubble 0.6735 0.6392

educational institution 0.6105 0.6174
electric substation 0.8983 0.9019

factory or powerplant 0.6346 0.6316
fire station 0.6223 0.6349

flooded road 0.6835 0.7051
fountain 0.8564 0.8691

gas station 0.8810 0.8732
golf course 0.9378 0.9469

ground transportation station 0.8022 0.8036
helipad 0.8604 0.8696
hospital 0.5018 0.5143

interchange 0.9146 0.9239
lake or pond 0.7358 0.7487

lighthouse 0.8197 0.8227
military facility 0.7107 0.6995

multi-unit residential 0.5353 0.5403
nuclear powerplant 0.5882 0.6250

office building 0.3252 0.2866
oil or gas facility 0.8692 0.8743

park 0.7364 0.7803
parking lot or garage 0.7856 0.7946

place of worship 0.7679 0.7698
police station 0.4040 0.4416

port 0.7294 0.7456
prison 0.7500 0.7423

race track 0.9449 0.9449
railway bridge 0.8062 0.8333

recreational facility 0.9303 0.9308
impoverished settlement 0.8056 0.7887

road bridge 0.7713 0.7701
runway 0.9099 0.9237
shipyard 0.6000 0.6313

shopping mall 0.6910 0.7063
single-unit residential 0.7598 0.7637

smokestack 0.7970 0.8226
solar farm 0.9453 0.9412

space facility 0.8421 0.9474
stadium 0.8598 0.8611

storage tank 0.9368 0.9440
surface mine 0.8993 0.9064

swimming pool 0.9238 0.9286
toll booth 0.9474 0.9549

tower 0.7940 0.7907
tunnel opening 0.9722 0.9652
waste disposal 0.6880 0.6984

water treatment facility 0.9122 0.9165
wind farm 0.9740 0.9778

zoo 0.7097 0.7527
Overall 0.7705 0.7798



theory into the training process as well as increasing the
number of contextual parameters.
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