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Abstract—We propose a continuous biometric authentication
framework that uses the Possibilistic C-Means (PCM) algorithm
to guarantee that only authorized users can access a protected
system. PCM is employed to cluster a history of biometric
samples in two classes: genuine and impostor. The degree of
membership of the current biometric sample to those classes is
then used as a score, which is fused over time to reach a decision
regarding the safety of the system. The main advantage of our
approach is that it is training-free, and thus is applicable to
any biometric feature that can be captured continuously without
modification. We evaluated our system using 2D, 3D and NIR
videos of faces and achieved results comparable to a training-
based state-of-art work.

Index Terms—Possibilistic C-Means, Fuzzy clustering, Biomet-
rics, Continuous authentication

I. INTRODUCTION

Traditional authentication methods like passwords and id
cards are too risky in high security environments [1]–[3]. Many
biometrics have been proposed to tackle this problem, but even
in such systems the authentication process is performed only
once and an unauthorized access could occur after the initial
identity verification. Continuous authentication addresses this
problem by verifying if the authorized person is using the pro-
tected resource during the entire access [4]. A typical example
of application of continuous authentication is a subject using a
computer. While the authorized person is using the computer,
the system must grant access for the whole session. If the
authorized person leaves the computer and another person
starts using the computer, the system must detect the intrusion
and deny access to the impostor.

Different biometrics features have been used for continuous
authentication in the literature: keystrokes [5]–[7], electrocar-
diograms [8], faces [9]–[12], touchscreen interactions [13]–
[15], fingerprints [4], [16] and multimodal features [4], [16],
[17]. Each of them has advantages and disadvantages (e.g.
fingerprints are more discriminant then faces, but are hard to
be continuously captured), so most continuous authentication
works mostly focus on the chosen biometric feature and not
on the continuous evaluation itself. For this reason, they rely
on precomputed biometric-specific models that depend on the
databases used for training. As it is very hard to create a
database that represents well all kinds of variations that may
occur during a real access, it is common to have certain biases
or assumptions in those works. Thus, a continuous authentica-
tion method should ideally be invariant to the biometric feature
and should not require any kind of training.

In this work, as our main contribution, we propose and
validate the use of the Possibilistic C-Means (PCM) algo-
rithm [18] for continuous authentication. Continuous authen-
tication systems can me modeled as a two-cluster problem,
where one cluster represents the genuine user and the other
one the impostor. Therefore, the PCM can be performed on
a history of biometric observations to compute the degree of
membership to each cluster, and these values can be fused
over time to decide whether an access is still safe or not.

In our experiments, we use facial biometrics because it
can be represented through different features: texture (2D
images) [4], shape (3D images) [11] and infrared reflectance
(near-infrared images (NIR)). Nowadays, all those facial fea-
tures can be captured simultaneously using sensors like the
Microsoft Kinect One1 and the Intel RealSense2. Taking
advantage of that, we were able to evaluate the performance of
our training-free continuous authentication method on different
biometric features in very similar acquisition conditions. This
way, we eliminate user behavior during acquisition as a cause
for atypical experimental results.

The remainder of this paper is organized as follows:
Section II describes our PCM-based method for continuous
authentication; Section III shows our experimental results; and
Section IV presents our discussion and conclusions.

II. CONTINUOUS FACE AUTHENTICATION USING PCM

Figure 1 presents a flowchart of our continuous authentica-
tion system. The initial three steps are commonly found in any
kind of biometric system, continuous or not. They consist in
digitally acquiring a biometric trait and preparing it for future
matching. Depending on the chosen biometric, slightly differ-
ent tasks are performed. For faces, it is necessary to determine
the location of the face, eliminate unwanted variations (e.g.
pose, illumination, expressions), and then extract a concise
and discriminative set of features, which we call a biometric
sample. Biometric samples are used for two distinct purposes:
to identify the user during login, or to confirm the identity of a
logged user during the continuous authentication. The sample
used for login is saved as the user template (genuine medoid),
and the following samples will form a history of observations.
Both are later used by the PCM algorithm to compute the
degree of membership of the current sample to two clusters:

1https://www.xbox.com/en-US/xbox-one/accessories/kinect
2https://software.intel.com/en-us/realsense



genuine and impostor. High membership values to the genuine
cluster indicate that it is safe to maintain the access, while
high membership values to the impostor cluster indicate that
the current user should be logged off the system. Therefore,
membership values are fused over time to aid the continuous
process of classifying each instant as safe or unsafe, which
will cease the access if necessary. More details are given in
the following sections.

Fig. 1. Flowchart of our continuous authentication system.

A. Image Acquisition

Both Microsoft Kinect One and Intel RealSense sensors
are able to capture 2D, 3D and NIR images simultaneously.
Figure 2 illustrates one acquisition using the Kinect. Each of
these images represent different facial properties that constitute
different biometric features. Thus, both sensors would allow
the evaluation of different biometrics in our continuous au-
thentication system. We picked the Kinect because its images
have better quality in comparison to the Realsense.

B. Face Detection and Normalization

For 2D and NIR images, we used a state-of-the-art face and
landmark detector based on Multi-Task Convolutional Neural
Networks (MTCNN) [19]. Although it was trained for 2D
images only, it performs reasonably well for NIR images.
The MTCNN finds the location of eye centers, nose tip and

(a) 2D

(b) NIR (c) 3D

Fig. 2. Examples of face image acquisition using a single sensor to capture
(a) color, (b) infrared and (c) depth information.

mouth corners for each face. With this information, detected
faces are then rescaled to 128×128 pixels. Pose variations are
corrected by the angle between eye centers, scale variations
are reduced by enforcing the distance between eyes and mouth
to 48 pixels, and translation variations are eased by setting the
distance between eyes and the top border to 40 pixels [20].
3D faces are detected by a cascade classifier of Haar-like
features [21] and then aligned to an average face model for
pose normalization [11]. Later, it is interpolated as a 128×128
image with scale similar to the other two modalities. Figure
3 shows the result of the normalization step for a face in all
three modalities considered in this work.

(a) 2D (b) NIR (c) 3D

Fig. 3. Normalization result for faces in (a) color, (b) infrared and (c) depth
images.

C. Feature Extraction

We extracted a feature vector with 256 values for each nor-
malized image using a state-of-the-art Convolutional Neural
Network (CNN) released by Wu et al. [20]. Originally trained
for 2D images, Wu et al.’s CNN achieved good performance
in NIR and 3D images in the literature [22], although it gets
higher accuracy for modalities that are more consistent with its
training. Equal Error Rates (EER) for 2D, NIR and 3D images



in controlled datasets were approximately 0.5%, 2% and 7%,
respectively, in Dahia et al.’s work [22]. This difference in
performance allowed us to analyze the impact of the feature
discriminability in the continuous authentication process.

D. PCM-based Membership Value Estimation

At the login step, one feature vector is stored as the user
template, which will serve as the genuine medoid for the
entire access. After the login, the last 10 faces are kept as
the history of observations. The PCM algorithm is performed
on this history and the degrees of membership to genuine and
impostor clusters for the last observation are calculated. The
PCM parameters utilized were fuzziness value of 1.5 and max-
imum number of iterations of 100. The fuzziness value of 1.5
is recommended by the authors of PCM, Krishnapuram and
Keller, as the most adequate for their proposed membership
function [23]. Due to the small number of observations kept,
convergence is usually achieved in less than 5 iterations, so
a maximum of 100 iterations is more than enough for our
application. The centroid of genuine cluster is always the
genuine medoid, since this is the only sample that is known to
be genuine. The impostor centroid is initialized as the farthest
observation from the genuine centroid and its final value is
calculated by the PCM algorithm. The distance metric used
to compare feature vectors is the cosine distance transformed
to a range of [0, 100], with 0 being the most similar and 100
being the least. As the history size and the feature vector are
relatively small, the entire clustering process is very fast (i.e.
runs thousands of times per second).

Ideally, when the genuine user is using the system, the last
observation zt should be close to the genuine centroid and
consequently should have a high membership to the genuine
cluster (wt,genuine) and a low membership to the impostor
cluster (wt,impostor). On the other hand, when an impostor is
using the system, the history will be composed of impostor
samples only. Thus, zt should be closer to the impostor cen-
troid and have low wt,genuine and high wt,impostor. However,
when the genuine user is using the system, both centroids
are very close to each other, causing wt,impostor to be high,
too. To address this problem, we use the distance between the
two centroids to infer the reliability of the system. If the two
centroids are close, probably the genuine user is accessing the
system. If they are far, probably the impostor is accessing
it instead. Knowing that, the key to calculate meaningful
membership values wt,genuine and wt,impostor is to establish
good zones of influence ηgenuine and ηimpostor for PCM. The
parameter ηj defines the distance in which the membership
value of an observation to the cluster j becomes 0.5 [18]. We
expect ηgenuine to be high and ηimpostor to be low when the
centroids are close, easing the drops in wt,genuine caused by
intraclass variations (e.g. pose variations and face expressions).
When the centroids are far, ηgenuine is expected to be low
and ηimpostor high. This reduces the chance of an impostor
successfully impersonating the genuine user. The values of
ηgenuine and ηimpostor are given by Equations 1 and 2:

ηgenuine = max dist− dist(cgenuine, cimpostor) (1)

ηimpostor = dist(cgenuine, cimpostor) (2)

where max dist is the maximum distance of the dis-
tance metric (in this work, max dist = 100) and
dist(cgenuine, cimpostor) is the distance between the two cen-
troids. Figures 4(a) and 4(b) illustrate the idea behind Equa-
tions 1 and 2 in the Euclidean space. Figure 4(a) illustrates the
case of distant centroids, in which ηgenuine is far lower than
ηimpostor. In Figure 4(b) the centroids are close, and ηgenuine
is higher than ηimpostor.

(a) (b)

Fig. 4. Illustration of (a) distant and (b) close centroids. Blue and red
points are respectively genuine and impostor centroids. The blue dashed line
represents the value of ηgenuine, and the red one ηimpostor .

Finally, the membership values are defined by Equa-
tions 3 and 4:

wt,genuine =
1

1 + (
dist(zt,cgenuine)2

ηgenuine
)

1
p−1

(3)

wt,impostor =
1

1 + (
dist(zt,cimpostor)2

ηimpostor
)

1
p−1

(4)

where p is the fuzziness value. With our centroid initialization
and ηj estimation, we settled some of the some weaknesses of
the PCM algorithm (e.g. coincident clusters and initialization
dependency).

E. Temporal Integration

Temporal integration was originally proposed by Alti-
nok and Turk [16] and later adapted by Sim et al. [4] and
Pamplona Segundo et al. [11], the latter being the one em-
ployed in this work. At any time, the system uses Equation 5
to calculate the probability of being safe, called Psafe, given
a history of score observations Zt = {z1, z2, . . . , zt} with
zi = {wi,genuine, wi,impostor} and t being the time of the last
observation:

Psafe =
2

−∆t
k × P (safe|Zt)

P (safe|Zt) + P (unsafe|Zt)
(5)

where k determines how fast Psafe drops in the absence of
observations (k = 15 as in [11]) and ∆t is the time passed



Fig. 5. Illustration of Psafe values along time. The blue line is the Psafe values when the allowed user was using the system. The other ones are when the
intruders were using instead. The faces with blue contour represents examples of frames when the allowed user is using the system. The other ones belong
to the intruders.

since the last observation zt was obtained. P (safe|Zt) and
P (unsafe|Zt) are given by Equations 6 and 7:

P (safe|Zt) ∝ P (zt|safe) + 2
u−t
k × P (safe|Zu) (6)

P (unsafe|Zt) ∝ P (zt|unsafe) + 2
u−t
k × P (unsafe|Zu)

(7)
where u is the time of the penultimate observation. Finally,
P (zi|safe) and P (zi|unsafe) are directly obtained from the
membership values, as shown in Equations 8 and 9:

P (zt|safe) ∝ wt,genuine (8)

P (zt|unsafe) ∝ wt,impostor (9)

Equations 8 and 9 represent the main difference between
this work and previous temporal integration versions [4],
[11], [16]. While previous works rely on pretrained models
for specific biometrics in order to estimate P (zt|safe) and

P (zt|unsafe), our method requires only a small history of
observations of the biometric feature in use. This reduces the
effort to build a continuous authentication system as we do not
need to process large amounts of data to precompute models or
parameters. In addition, if the descriptor or biometric trait used
for continuous authentication are changed, our work requires
no modification.

III. EXPERIMENTS

For the experiments, we recorded 7 videos from different
users in 2D, 3D and NIR. The Kinect was positioned in
between the computer screen and the table. Each video has
an average duration of 40 minutes at a rate of 15 frames per
second. As intraclass variations play a major role in continuous
authentication, long videos of a few users are preferable over
short videos of many users. In our case, users were asked
to use a computer for at least 30 minutes, and no further
instructions were provided.

As each video contains a single user, we concatenate every
permutation of two videos to simulate several genuine accesses
followed by an impostor takeover (i.e. 42 combined videos in



(a) (b) (c)

Fig. 6. ROC curves using PCM-based and CDF-based continuous authentication for (a) 2D, (b) NIR and (c) 3D modalities.

total), as illustrated in Figure 5. We compute the value of Psafe
over time for each of the resulting videos in order to evaluate
the accuracy of the continuous authentication. An example of
a composite plot with the Psafe value over time using our
approach is shown in Figure 5, in which a blue line represents
the genuine access and each other color represents one of the
possible takeovers. The bigger the gap between the blue line
and other lines in the y-axis is, the higher the accuracy will
get.

In order to assess the effectiveness of the proposed ap-
proach, we compare our results to Pamplona Segundo et al.’s
method [11]. To this end, instead of using PCM to compute
P (zi|safe) and P (zi|unsafe), we train cumulative distribu-
tion functions (CDF) for genuine and impostors using different
databases. This is done by estimating the parameters µj and
σj for the Equations 10 and 11:

P (zt|safe) ∝
1

2

[
1 + erf

(
s− µgenuine
σgenuine

√
2

)]
(10)

P (zt|unsafe) ∝ 1− 1

2

[
1 + erf

(
s− µimpostor
σimpostor

√
2

)]
(11)

where s is the cosine similarity between the last observation
and the genuine medoid (user template). Given a training set,
µgenuine and σgenuine are the average and the standard devi-
ation of cosine similarities for matchings between images of
the same subject, and µimpostor and σimpostor for matchings
between images from different subjects.

Four databases were used to train CDFs. The first one is
our own private collection containing 5565 images from 97
subjects acquired by a Realsense in 2D, 3D and NIR. The
second one is the CASIA NIR-VIS 2.0 database [24], which
contains 17,580 images from 725 subjects in 2D and NIR. The
third one is the Face Recognition Grand Challenge (FRGC)
database [25], with 4,950 registered 2D and 3D images of
556 subjects. The last one is the Labeled Faces in the Wild
(LFW) database [26], with over 13,000 2D images from 1,680

subjects. These databases have different levels of intraclass
and interclass variations and not necessarily represent the chal-
lenges of a continuous authentication scenario. Such variations
result in different CDF parameters, as presented in Table I, that
will later affect the recognition performance.

TABLE I
CDF PARAMETERS OBTAINED FROM DIFFERENT DATABASES TO BE USED

IN PAMPLONA SEGUNDO ET AL.’S APPROACH [11].

Dataset Type µgenuine σgenuine µimpostor σimpostor

OWN 2D 0.725852 0.126884 0.084115 0.113743
3D 0.602357 0.152128 0.506733 0.135946
NIR 0.721015 0.138441 0.216271 0.136031

CASIA 2D 0.908512 0.098547 0.091035 0.144248
NIR 0.904982 0.122205 0.167486 0.148112

FRGC 2D 0.780994 0.108019 0.044956 0.106242
3D 0.835823 0.100811 0.459365 0.135612

LFW 2D 0.626883 0.127443 0.009360 0.092923

For each of the considered modalities, we evaluated Pam-
plona Segundo et al.’s CDF-based approach [11] using all
possible parameters from Table I and our PCM-based approach
for all concatenated videos. The Psafe values for all videos
in each of these tests were then compiled into a receiver
operating characteristic (ROC) curve, and the results are shown
in Figure 6. These curves show how good is the separation
between genuine and impostor Psafe values. As may be
observed, our results are comparable to the best results for 2D
faces, are better for 3D and worse for NIR. Table II shows the
EER for each of these curves to better illustrate the previous
observation.

In order to understand these results, we created composite
plots like the one presented in Figure 5 for all experiments
reported in Figure 6 and Table II. Then we looked for
anomalies that could explain this difference across modalities.
As the acquisition was carried out simultaneously for the three
modalities, variations in user behavior were automatically
discarded as a possible cause.

Four composite plots for 2D faces illustrating the best and



(a) (b)

Fig. 7. Psafe values along time for the (top) best and (bottom) worst testing case of (a) PCM and (b) CDF [11] when using 2D face images. The blue line
shows the Psafe value while the genuine user is accessing the system, and each other color shows the changes in Psafe when one of the other users takes
over the access as an impostor. CDF curves were obtained using CASIA/2D parameters (see Table I).

(a) (b)

Fig. 8. Psafe values along time for the (top) best and (bottom) worst testing case of (a) PCM and (b) CDF [11] when using 3D face images. CDF curves
were obtained using FRGC/3D parameters (see Table I).

(a) (b)

Fig. 9. Psafe values along time for the (top) worst and (bottom) best testing case of (a) PCM and (b) CDF [11] when using NIR face images. CDF curves
were obtained using CASIA/NIR parameters (see Table I).

the worst case scenarios for PCM and CDF are shown in
Figure 7. For CDF, we picked the parameters with the best
result in Table II. As Wu et al.’s CNN [20] was trained on
2D images, we expected to obtain this level of separation for
both approaches. The major difference is that PCM does not
take advantage of the entire range of Psafe values. This occurs
because the membership degree to the impostor cluster is never
close to zero (see Figure 4(b)), as we do not have a medoid for

impostors like we have for genuine users. On the other hand,
CDF has previous knowledge about both genuine and impostor
classes and is able to better exploit the Psafe range. However,
if the training is not performed on an adequate database, like
LFW in Table II, the accuracy will be considerably affected.

Similar plots for 3D faces are presented in Figure 8. In
this case, Wu et al.’s CNN [20] is not as discriminative,
causing CDF to fail in maintaining Psafe values close to 1 for



TABLE II
EERS FOR CONTINUOUS AUTHENTICATION BASED ON 2D, 3D AND NIR

FACIAL FEATURES USING OUR PCM-BASED APPROACH AND
PAMPLONA SEGUNDO ET AL.’S CDF-BASED APPROACH [11].

Method Training 2D 3D NIR
PCM - 0.00384 0.04763 0.04553
CDF OWN 0.00401 0.11000 0.03607
CDF CASIA 0.00357 - 0.02825
CDF FRGC 0.00461 0.06343 -
CDF LFW 0.01410 - -

genuine accesses and 0 for impostors as we saw in Figure 7(b).
Although the gap between genuine and impostor classes for 3D
faces is not as large as for 2D faces, the Psafe behavior under
PCM is much more stable across 2D and 3D when compared
to CDF. Therefore, it ended up with the lowest EER in Table II.
This indicates that our approach can be robust even when less
discriminative features are considered, without any adjustment
or tuning.

For NIR, PCM was not able to match or outperform CDF.
As PCM is training-free, we anticipated that it might not
achieve the best accuracy every time. However, in this specific
case, we observed that another factor may have caused this low
performance. As may be seen in Figure 9, in both methods
we have a significant amount of drops in the Psafe value
for a genuine user, which is explained by MTCNN failing
to detect faces in NIR images (i.e. MTCNN was trained for
2D images). CDF has a better separation due to the preexisting
training, so it is not as affected as PCM. In addition, PCM is
completely based on a history of observations, so the absence
of that definitely affects the performance. This is a limitation
of our approach, as it is only comparable to other training-
based methods when a constant feed of biometric samples is
supplied.

IV. CONCLUSION

At the best of our knowledge, this is the first work to use
PCM for continuous authentication purposes. We use PCM to
clusterize a history of biometric samples in order to estimate
the safety of the system, and by doing so we eliminate the
need for a training stage. This is a major advantage, as it is
very hard to create a training set that contains all kinds of
variations that happen in a real access.

We analyzed the performance of our approach using three
different biometric features: 2D, 3D and NIR face images. We
achieved results better than the state-of-the-art for 3D faces,
and comparable to the state-of-the-art for 2D faces. These
results show that our approach is capable of handling biometric
features with different discriminability levels. For NIR faces,
we observed that PCM has problems when it is not possible to
maintain a constant feed of biometric samples. In our case, this
was caused by a faulty face detector. However, some biometric
features are not continuous by nature, like voice, keystrokes
and touchscreen interactions, and our PCM-based may not be
the most appropriate approach for them. Still, we have other
features that are even more suitable for our approach than

faces, such as electrocardiograms, electroencephalograms and
and other biomedical signals.

Despite the encouraging results, the proposed method can
be improved. Ideally the value of Psafe should be close to 1
when the genuine user is accessing the system and close to 0
when an impostor takes over. The Psafe value currently resides
right above 0.5, which means the degree of membership to the
two clusters is nearly the same. This is due to the value of
ηimpostor not being low enough. Thus, as a future work, we
intend to investigate other training-free alternatives to compute
membership values that expand interclass variations while
maintaining the low intraclass variations obtained so far.
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