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Abstract—We present a novel method for newborn authen-
tication that matches keypoints in different interdigital regions
from palmprints or footprints. Then, the method hierarchically
combines the scores for authentication. We also present a novel
pore detector for keypoint extraction, named Dynamic Pore
Filtering (DPF), that does not rely on expensive processing
techniques and adapts itself to different sizes and shapes of pores.
We evaluated our pore detector using four different datasets. The
obtained results of the DPF when using newborn dermatoglyphic
patterns (2400ppi) are comparable to the state-of-the-art results
for adult fingerprint images with 1200ppi. For authentication, we
used four datasets acquired by two different sensors, achieving
true acceptance rates of 91.53% and 93.72% for palmprints
and footprints, respectively, with a false acceptance rate of 0%.
We also compared our results to our previous approach on
newborn identification, and we considerably outperformed its
results, increasing the true acceptance rate from 71% to 98%.

Keywords—Newborn recognition; dermatoglyphic patterns; pore
detection.

I. INTRODUCTION

Nowadays, nearly 131 million children are born every year
in the entire world!. Among them, there are many cases of
baby swaps, child kidnapping and illegal adoption due to the
lack of proper newborn identification methods. Within this
context, biometrics are emerging as a solution since they can be
used in maternity wards or airports to solve these problems [1],

(21, [3]. [4], [5].

In this work, we present a novel method for newborn
authentication based on the matching of keypoints extracted
from palmprints or footprints, also called dermatoglyphic pat-
terns. None of the above mentioned works has used keypoints
for newborn recognition purposes. One reason, may be the
difficulty in capturing suitable images that allow extracting and
describing keypoints. Instead, they used other biometrics, such
as face [2], [5], ear [4] or friction ridges in dermatoglyphic
patterns [3]. However, these biometrics change after birth, thus
not meeting the immutability criterion.

To extract keypoints, we have used a well-known corner
detector [6] and we have also designed a pore detection
algorithm. Recently, pores have been explored in adult fin-
gerprint recognition [7], [8]. However, current methods for
pore extraction rely on processing techniques such as ridge
reconstruction and estimation of orientation and frequency,
which may be both expensive and not suitable on poor quality
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images (e.g. newborn dermatoglyphic patterns). Therefore, as
our first contribution, we have designed a new pore detection
method, named Dynamic Pore Filtering (DPF). This method
does not rely on expensive processing steps and adapts itself
to different sizes and shapes of pores. Some examples of pores
with different sizes and shapes are shown in Figure 1.

Fig. 1. Pores in dermatoglyphic patterns: circles show closed pores; squares
show open pores.

Our second contribution is the use of keypoints (i.e. corners
and pores) for newborn authentication using dermatoglyphic
patterns. The matching is individually performed for each
interdigital region of palmprints and footprints based on the
spatial relation between keypoints. Then, the matching scores
are hierarchically evaluated for authentication.

Keypoint-based biometric recognition solutions are being
widely used in the literature [9], [10]. In our problem, we are
interested in extracting keypoints for recognizing individuals
using dermatoglyphic digital images. Within this context, we
have used a well-known corner detection approach, called
Features from Accelerated Segment Test (FAST) [6]. The
FAST detector is a corner-based keypoint extraction method,
which may be used for many vision problems, such as object
tracking and recognition [11]. Corners are commonly used
as keypoints, and FAST is considered one the most efficient
corner detectors in the literature [6]. Also, we developed a pore
detection approach, DPF, which was specifically designed for
newborn dermatoglyphic patterns.

This paper is organized as follows. In Section II we



describe the proposed method for pore detection (DPF). Sec-
tion III presents the hierarchical matching approach. Our
experimental evaluation is presented in Section IV. Finally,
our final remarks are discussed in Section V, followed by the
references.

II. DYNAMIC PORE FILTERING

The proposed method for pore detection is divided into the
following stages: (A) Region of Interest (ROI) extraction and
image equalization; (B) global binarization threshold estima-
tion; (C) pore size estimation; (D) pore classification; and (E)
pore location estimation.

A. ROI extraction and image equalization

This stage is performed as in [1]. To do so, first we
rectify the image orientation and remove finger or toe re-
gions from palmprints or footprints, respectively, as in [12].
Then, the Contrast Limited Adaptive Histogram Equalization
(CLAHE) [13] is employed to normalize the image appearance.

B. Global binarization threshold estimation

In this stage, a global binarization threshold 7 is estimated
by Otsu’s method [14]. This method is able to automatically
compute the threshold for an image with two distinct pixel
classes, which is the case of dermatoglyphic patterns (i.e.
ridges and valleys). After this stage, only pixels with value
above T are going to be evaluated, since pores are always
bright regions.

C. Pore size estimation

For each pixel with value above T, we search for the
closest neighbor with value under T in four directions: up,
down, left and right. There is a maximum search distance to
find these neighbors, which was empirically defined as 20
pixels in this work. This threshold is based on the analysis
of the size of pores in multiple images from different subjects
and acquisition devices. If more than one direction reaches
this maximum value, the current pixel is discarded since it is
considered a valley point.

Figure 2 illustrates five examples of this process, labeled
with the letters A, B, C, D and E. Candidates A and B are
closed pores, C and D are valley points, and E is an open pore.
As may be seen, candidate C reaches the maximum search
distance in up and down directions, so it is discarded in the next
stages. Closed pores always reach a neighbor in all directions,
and open pores may have one direction without a neighbor.

A global pore radius ¢ is then computed using Equation 1:

1
e m Z(dﬁp + d§own + dfeft + dfight) M
pEP

where P is the set of pixels with value above T and at least
three known neighbors, and dg is the distance of the current
pixel p to its neighbor in the direction 6.

Fig. 2.

Pore size estimation examples.

D. Pore classification

For each pixel p € P, a local binarization threshold 77,
is defined as the average of the pixels in a 6rg X 6rg mask
centered on p (i.e. since 2rg is the average width of pores
and valleys, the size 67 ensures that the mask will contain at
least one valley and one ridge in it). Also, a local pore radius
ry, is computed using Equation 2:

1
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where P’ is the set of pixels in P that are also inside the mask
defined above. The values for 77, and r; can be efficiently
computed using integral images [15].

We then analyze the pixels in a circle with radius 7, around
the current pixel p to determine if it is a pore. Figure 3 shows
six examples of these circles, labeled with the letters A, B, C,
D, E and F. As may be seen, the radius value adapts to the size
of the pores, labeled as B, D and F. The pixels in the circle are
classified as valley if above 77, (shown in white in Figure 3),
and as ridge otherwise (shown in black in Figure 3).

Fig. 3. Circles with size ry, around pore candidates.
Then, each pixel is classified as a pore if it satisfies the
following three conditions:

e  The number of valley pixels must be smaller than 40%
of the number of pixels in the circle (i.e. pores are
surrounded by ridge pixels, so the number of ridge
pixels in the bounding circle must be high, as may
be observed in candidates B, D and F in Figure 3).
This threshold was empirically defined based on the
analysis of the number of pixels in the circle in mul-
tiple images from different subjects and acquisition
devices;



e  Only one transition between contiguous pixels of same
type (valley or ridge) is allowed (i.e. closed pores
do not have any transition, as may be observed in
candidates B and D in Figure 3; open pores have
one transition, as may be observed in candidate F in
Figure 3);

e  The average value of the pixels in the circle is below
Ty, (i.e. pixels in the bounding circle are mostly ridge
pixels, so their average value is low).

Figure 4 shows some results after the pore classification
stage for images with different resolution and dermatoglyphic
patterns. Also, the variation in the size of the pores is very
high, but, as may be observed, the presented method is able
to detect pores across all these variations. Most of the false
positives are caused by small saliences in the ridges that look
like open pores, although bifurcations are also a problem.
These problems are highlighted in Figure 4(b).

(a) Newborn palmprint — 2400ppi

(d) Adult palprint — 1000ppi

Fig. 4. Pore classification results: white pixels in images of the right column
were classified as pore after the application of the initial four stages of the
proposed method on the images of the left column.

E. Pore location estimation

In this final stage, all connected pore pixels are transformed
into a single point by computing their center of mass. Figure 5
shows an example of the keypoints extracted from a palmprint
image using FAST and DPF.

III. MATCHING

Once we extracted a set of keypoints Py =
{pf,pd, ..., pA4} from an image A, where p/* = {z#, y}
and N is the number of keypoints, a local descriptor
d;“ is computed for every point in P4. We applied the
DAISY approach [16] to compute these descriptors because
it outperformed other state-of-the-art descriptors, such as
SIFT [17] and SURF [18], in our experiments. This descriptor

(b) DPF

Fig. 5. Keypoint detection using (a) FAST and (b) DPF.

was originally developed for stereo matching, so it is not
robust to large variations in orientation and scale, which is
not a problem in our images.

To match two images A and B, first we need to establish
point correspondences in the sets P4 and Pp. To this end,
a correspondence c¢;; matching points pf‘ e pf must satisfy
Equations 3 and 4:

min [|d* — dil ||, k = j 3)

min |[dif — d7| k=i )

We used kd-trees [19] to speed up the search for the set
of correspondences C, which is then used to compute the
matching score s4p as in Equation 5:

1 1
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This score is high if A and B belong to the same person
(genuine matching), because the difference in the distance
between two points in P4 and the distance between their
corresponding points in B is very small if the correspondences
are correct. For images from different subjects (impostor
matching), this difference is usually large because all corre-
spondences are incorrect, then the score value is low.

To decide if A and B belong to the same person, we verify
if s4p is above a threshold ¢. If ¢ is high, the chance of a pair
of images from different subjects being classified as genuine is
low. However, the chance of a pair of images from the same
subject being classified as impostor is high. If ¢ is low, we
have the opposite scenario.

This matching measure takes advantage of the spatial rela-
tion between keypoints in a same image to penalize incorrect
correspondences. Usually this idea is not used for 2D images
due to the perspective distortion, which is only solved when
the 3D information is available [20]. Since dermatoglyphic
patterns are not affected by the perspective distortion, we can
use the spatial information to estimate the similarity without
having to find which correspondences are correct (Equation 5).
Figure 6 illustrates this process, showing that the distance
between keypoints is similar in images from the same subject
(colored lines in Figures 6(a) and 6(b)) and different in images
from other subjects (see Figure 6(c)).

Fig. 6. Example of the spatial relation between keypoints.

A. Hierarchical matching

When an image is properly normalized for both location
and orientation, it is possible to divide it in subregions and
then individually apply the matching for each subregion. By
doing so, it is possible to improve the recognition results if
some regions of the image are damaged.

In this matching scenario, we have multiple score values
shpg, s4p» .. and sk, where siy 5 is the score value for
the i-th subregion and K is the number of subregions. Then,
we will have a threshold value ¢; for each score s% 5, and also
threshold values for each possible combination of two or more
subregions by the sum rule [21] (e.g. #;1; is the threshold
for sum of the scores s and s’;5). These thresholds are
hierarchically applied, as in [22], to reduce the matching time
and increase the accuracy as well. Figure 7 illustrates the
hierarchical matching process. Even if all individual scores are
below their respective thresholds, a matching between images
from the same subject can still be correctly identified by the
sum of scores. This is possible because, most of the time, the
threshold for a sum of scores is lower than the sum of the
thresholds for these scores (e.g. t;1; < t; +t;).
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Fig. 7. Hierarchical matching of different subregions of a pair of images.

In this work, we horizontally divide palmprint and footprint
images in four subregions because there are four interdigital
regions in palmprints and footprints [23]. This way, we avoid
errors in the correspondence determination caused by similar
interdigital structures, such as core and delta points.

IV. EXPERIMENTAL RESULTS

We collected two different newborn image databases. To
the best of our knowledge, there are no publicly available
databases for newborn authentication. The first one, named
NB_ID, was acquired by a 1000 ppi scanner (CrossMatch
LSCAN?), and has 1221 palmprint and 1221 footprint images.
The second one, named NB_ID_II, was acquired by a 2400
ppi sensor we developed for this work, and has 519 palmprint
and 519 footprint images of 173 newborns. There are three
palmprint and three footprint images for each newborn, and
the images were collected no later than 48 hours after birth.

These images were automatically classified according to
their quality in five levels as presented in [24]: good, normal,
dry, wet and spoiled. We used the classification results to
eliminate subjects that do not have enough quality images to
be used in the recognition experiments. In NB_ID, only good
and normal images are proper for recognition due to the low
resolution. In our previous work [1], palmprint images from
only 20 newborns with good images were selected for the
recognition experiments (i.e. 60 images in total), which we
will call subset NB_ID_A. We have extended this subset to
include palmprints and footprints from 80 newborns (i.e. 240
images in total), called subset NB_ID_B.

In NB_ID_II, good, normal and dry images could be used
for recognition since we have a higher resolution. In total,
297 palmprints and 231 footprints from 99 and 77 newborns,
respectively, were selected for the recognition experiments,
called subset NB_ID_II_B.

A. Pore detection results

In this experiment, we randomly cut a 100 x 100 region
from 10 randomly chosen images from each newborn dataset
(NB_ID_A, NB_ID_B and NB_ID_II_B). Then, we manually
marked all pores in these cuts to compute the detection rate

Zhttp://www.crossmatch.com/



and false discovery rate (FDR) values. On average, we detected
81% of the pores in newborn images (2400ppi) and obtained a
14.4% FDR. These results are comparable to the state-of-the-
art results for adult fingerprint images with 1200ppi [8].

We do not reconstruct ridges or estimate ridge orientation
and frequency to perform the detection, making the pore detec-
tion less expensive and also avoiding computing information
that is not going to be used later for matching. These results
also show the potential of the presented method regarding
adaptability, since we have used newborn images with different
resolutions and also adult images.

As may be seen, for a maximum displacement value
between 5 and 10 pixels, the method perform well for all
databases, obtaining results that are comparable to the state-
of-the-art works in pore detection [8].

Palmprint - NB_ID ——

Footprin D
Adult fingerprint - 2400 ppi

FRR
FDR

Sikasg
o 5 10 15 20 25 30 0 5 10 15 20 25 30
Maximum pore displacement in pixels Maximum pore displacement in pixels

(@) (b)
Fig. 8. Pore detection results: (a) FRR and (a) FDR.
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Fig. 9. Recognition comparison between our previous work and the proposed
method.

B. Newborn authentication results

In our first experiment, we have compared the proposed
matching method to our previous work [1] using NB_ID_A.
Figure 9 shows this comparison, and, as may be seen, our
new matching outperforms our previous results. The true
acceptance rate (TAR) reaches 98% with a 0% false acceptance
rate (FAR), while we achieve 71% in [1] with the same
FAR. We also show that our hierarchical approach can be
extended to combine both FAST and DPF keypoints to obtain
more accurate results. We noticed that, when recognizing

dermatoglyphic patterns through keypoints, the discrimination
power of pores is complementary to corners, which are a
keypoint widely used in the literature.

We performed a second experiment in order to evaluate
the performance of the presented method across common
acquisition problems. In this experiment, we used larger
subsets (i.e. NB_ID_B and NB_ID_II_B) with images that
have lower quality than the once in subset NB_ID_A. The
results, presented in Figure 10, show that similar recognition
rates are obtained for palmprint and footprint images. Also,
the combination of FAST and DPF increases the recognition
results. As may also be observed, the resolution plays a major
role in the recognition task. For the subset NB_ID_II_B, even
using dry images which are not as good as the images in
subset NB_ID_B, we achieved about 94% TAR with 0% FAR,
while we obtained only 86% TAR with 0% FAR for the subset
NB_ID_B. These results corroborate the analysis presented by
Weingaertner et al. [25], which concludes that at least 1500 ppi
are necessary to perform newborn recognition with palmprints
and footprints.

V. CONCLUSION

We have presented a novel method for newborn authenti-
cation by matching keypoints in a hierarchical framework. To
this end, we have designed a novel pore detection method to
extract keypoints from dermatoglyphic patterns.

Our pore detection results are comparable to the state-of-
the-art, but our method does not require ridge reconstruction
or ridge orientation and frequency estimation steps to do
so. Therefore, our pore detector requires less computational
resources than other methods in the literature.

For authentication, we show that is possible to reach
91.53% TAR for palmprints and 93.72% TAR for footprints
with 0% FAR when high resolution images are available. Also,
we considerably outperformed our previous work, achieving
98% TAR with 0% FAR in the subset of images with good
quality, against 71% TAR obtained before. As a future work,
we intend to investigate a multimodal approach using both
palmprints and footprints to increase the recognition accuracy.
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