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ABSTRACT

In this work we evaluate the influence of pose variation
on 3D face reconstruction from a single image. To this end,
we present a 3D reconstruction method that combines a fit-
ting technique and a sparse 3D deformable model to estimate
the 3D information of 2D images with large pose variations.
For our experiments, we synthetically created 2D images by
rendering 3D models from the BU-3DFE database in different
points of view. Thus, we have a precise ground truth that al-
lows performing a quantitative analysis of the reconstruction
accuracy. Our experimental results show that the reconstruc-
tion achieves the highest accuracy when using half-frontal
face images, and is also more robust to noise and incorrect
facial landmarks positioning.

Index Terms— Reconstruction algorithms, face recogni-
tion, biometrics.

1. INTRODUCTION

Recognizing faces of non-cooperative subjects using 2D im-
ages is a challenging problem due to variations in pose, il-
lumination and facial expressions. To overcome these prob-
lems, many recent works in the literature have employed 3D
face reconstruction methods [1–7].

Some 3D face reconstruction methods use multiple 2D
images to recover the geometry of a face. Choi et al. [2] used
the sparse bundle adjustment algorithm over a set of facial
landmarks in five images with specific facial pose to compute
a sparse 3D face model. A dense 3D face model is obtained by
Medioni et al. [6] by applying a structure from motion tech-
nique to a high resolution video sequence. However, in some
cases, there is only a single 2D image available to recover the
geometry of a face.

Nevertheless, it is still possible to three-dimensionally re-
construct a face using a single 2D image as input. Jiang et
al. [3] fitted a 3D deformable face model to a set of landmarks
in a frontal face image to obtain a 3D face model. Blanz and
Vetter [1] also used a 3D deformable face model, but the fit-
ting process was guided by the texture information and there
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was no restrictions on the face pose. Finally, Kemelmacher-
Shlizerman and Basri [4] used a shape from shading tech-
nique to deform a reference face model and obtain the 3D
model of a face. All these face reconstruction methods can be
performed fully automatically. However, in case of failures
or unexpected scenarios (e.g. high illumination variation or
painted faces), only landmark-based methods can be manu-
ally assisted in a practical way.

In this work, we developed a landmark-based face recon-
struction method to recover the geometry of a face using a
single image as input. To this end, the Levenberg-Marquardt
(LM) iterative minimization technique [8] is applied to obtain
camera and deformation parameters that fit a sparse 3D de-
formable face model in a set of facial landmarks located in
the input image. These landmarks may be automatically lo-
cated by an active face model [9] or manually obtained. After
that, the Thin-Plate Splines (TPS) technique [10] can be used
to deform a generic face model in order to obtain a dense 3D
model of the input face, as in [2, 11].

Half-frontal face images have not been applied to face
recognition as much as frontal [12, 13] and profile face im-
ages [14,15] due to the difficulty of standardizing acquisition
and appearance of such images without any 3D information.
However, as observed in neuropsychology works [16], half-
frontal images allow perceiving all three axes in a single im-
age, as shown in Fig. 1, which is an interesting property for
3D face reconstruction. To investigate this observation, we
applied our face reconstruction method to a wide range of
pose variation in order to evaluate the influence of pose on
3D face reconstruction.

(a) (b) (c)

Fig. 1. Illustration of visible axes in face images with differ-
ent pose: (a) frontal, (b) half-frontal, and (c) profile images.



In our experiments we used neutral face images of all sub-
jects present in the BU-3DFE database [17]. Each face image
is composed of a textured surface mesh and 83 facial land-
marks, and was rendered in multiple poses to generate syn-
thetic 2D images with a precise ground truth. Therefore, it
was possible to quantitatively analyze the reconstruction ac-
curacy and to compare the obtained results on renderings with
different face poses.

2. 3D FACE RECONSTRUCTION

Our reconstruction method can be described as follows: given
a set of 2D landmarks P = {p1, p2, . . . , pN} in an input
image, with pi = {xi, yi}, the objective is to find the set
Q = {q1, q2, . . . , qN} with the 3D coordinates of the land-
marks qi = {Xi, Yi, Zi} and the transformation T that mini-
mize Equation 1:
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where p′i = Tqi. The transformation T is given by a camera
model with seven parameters: translation in all axes t, rota-
tion in all axes R and focal length f . A 3D landmark qi is
transformed into 2D coordinates on the input image p′i by ap-
plying Equations 2-4:
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where W and H are the width and height of the input image
respectively.

The set of 3D landmarks Q is obtained through a sparse
3D deformation model. This model is created by applying
Principal Component Analysis (PCA) [18] to training images
centered on the average set of 3D landmarks Q̄. After that, Q
is also represented as a vector of weights [w1, w2, . . . , wK ],
where wi is the weight of the i-th eigenvector ui returned by
PCA. The original representation of Q is recovered by Equa-
tion 5:

Q = Q̄ +

K∑
i=1

wiui (5)

Since the size of the vector of weights (i.e. K) is much
less than the size of the original representation (i.e. 3N ),
this alternative representation is used during the reconstruc-
tion process to reduce the number of parameters.

The LM iterative minimization technique [8] is performed
to find camera and deformable model parameters that mini-
mize Equation 1 in order to obtain the final set of 3D land-
marks.

2.1. Enhanced reconstruction through face symmetry

As the pose variation increases, the visible area of a face de-
creases. This fact is due to the self-occlusion problem. Fig. 2
shows the average number of visible landmarks in different
face poses by applying horizontal rotations (i.e. right to left
rotation of the head). As may be seen, the number of visible
landmarks decreases with increasing face rotation.

Fig. 2. Number of visible landmarks in different face poses.

However, most human faces are quite symmetric, which
allows using the visible side of a face to estimate the occluded
side. To this end, given two symmetric 3D landmarks qi and
qj , qj is mirrored into qi to create a redundant 3D landmark
qsi = {−Xj , Yj , Zj}. After that, the minimization equation
in the parameter estimation stage is replaced by Equation 6:
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||pi − p′i||+ ||pi − psi || (6)

where psi = Tqsi . Besides providing valid information for oc-
cluded landmarks, this enhanced reconstruction method also
reduces the influence of noise by providing redundant infor-
mation for symmetric landmarks when both are visible.

3. EXPERIMENTAL RESULTS

Our experiments were designed to evaluate the accuracy of
the presented reconstruction method across large pose varia-
tions. To this end, we used the available neutral images of
the BU-3DFE database [17], totalling 100 images (one per
subject). Each image has a textured surface mesh and a set
of 83 facial landmarks that was used as ground truth in our
experiments.



First we divided the database in training and testing sets,
each one containing 50 images. After applying PCA to the
training set, we keep 99% of the overall data variance.

After that, we used the testing set to create synthetic im-
ages with different poses, as illustrated in Fig. 3. For each
testing image, 121 renderings were created with pose varia-
tion ranging from −60 to +60 degrees. Each rendering was
reconstructed multiple times after adding a random noise with
average magnitude ranging from 0 to 5 pixels to the facial
landmarks’ position in order to show the robustness of the
method against noisy data.

(a) (b) (c)

Fig. 3. Renderings of a BU-3DFE subject in (a) frontal, (b)
half-frontal and (c) profile poses.

In our experiments, the reconstruction error is the average
Euclidean distance between the ground truth and the final set
of 3D landmarks in millimeters.

3.1. Reconstruction results

In our first reconstruction experiment, only frontal synthetic
images were used. These images were reconstructed with
the original number of landmarks, and then we simulated
self-occlusion by removing visible landmarks, as illustrated
in Fig. 4, in order to evaluate the robustness of the reconstruc-
tion method against missing information.

(a) (b) (c)

Fig. 4. Self-occlusion simulation in a frontal face image: (a)
original image, and occlusion from (b) half-frontal and (c)
profile images.

The obtained results are shown in Fig. 5, where the curve
with label “3D” presents the average reconstruction error of

the ground truth, and other curves with label “2D / X px”
present the average reconstruction error of frontal synthetic
images with self-occlusion simulation, where X is the aver-
age noise magnitude in pixels. As may be seen, our sparse 3D
deformable model is not able to exactly represent the images
of the testing set since there are no subjects in both training
and testing sets. For this reason, we obtained an average re-
construction error of about 2mm for the ground truth. Also,
in all cases, the average reconstruction error increases with
increasing self-occlusion and noise, as expected.

Fig. 5. Average reconstruction error of frontal synthetic im-
ages with self-occlusion simulation.

All synthetic images with various poses were used in our
second experiment in order to evaluate the influence of pose
variation on the reconstruction results. In the obtained re-
sults, shown in Fig. 6, the reconstruction error remains ap-
proximately constant in a wide range of rotation (i.e. from
−45 to +45 degrees). Also, there is a slight advantage in us-
ing half-frontal images for low noise images. These results
clearly outperformed the results shown in Fig. 5, evidencing
the superiority of half-frontal images over frontal images, as
observed in Fig. 1. However, they are still being affected by
noise and large pose variations.

In our final experiment, we recompute the previous exper-
iment using the enhanced reconstruction method (Sec. 2.1),
and the obtained results are shown in Fig. 7. We have
achieved high reconstruction accuracy and robustness against
large pose variations and noise. The superiority of half-frontal
images is even more evident in this experiment, in which the
reconstruction results are much closer to the ground truth
landmarks.

4. CONCLUSION

We presented a novel 3D face reconstruction method that uses
only a single face image with arbitrary pose as input. It com-
bines a sparse 3D deformable model and a simple camera



Fig. 6. Average reconstruction error of synthetic images with
pose variation.

Fig. 7. Average reconstruction error of synthetic images with
pose variation using the enhanced method.

model to estimate the 3D coordinates of 2D facial landmarks
through iterative minimization of the reprojection error. We
used the BU-3DFE database in our experiments to evaluate
the reconstruction accuracy across pose variation and noise.

Corroborating previous neuropsychology works [16], our
experiments have shown that half-frontal images present ad-
vantages over frontal images. Also, assuming that faces are
symmetric improved the reconstruction accuracy and the ro-
bustness against large pose variations and noise. The average
reconstruction error of half-frontal images ranged from 3.3 to
4.5mm, depending on the noise, using only unknown subjects
in the testing set.

As a future work, we intend to combine our reconstruction
approach with TPS [2, 11] or to extend our sparse face model
to a dense model [3] in order to obtain dense 3D models from
a single face. We also intend to evaluate the performance of
a face recognition system using only half-frontal face images

and our 3D reconstruction method.
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