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Abstract—We present a scale-invariant face detection approach
based on boosted cascade classifiers using range images as input.
The detector was developed to be employed as a preliminary
stage for any real-time 3D face recognition system. The required
computation time for this task was considerably reduced by
eliminating the need for scanning an input image in multiple
scales. Our experiments were performed using two well-known
databases, and the proposed approach was favorably compared
against a state-of-the-art face detection approach. We achieved a
detection rate of 99.9% with only 0.2% of the images presenting
false detections. We also evaluated the detector performance
in face images presenting large pose variations and obtained
detection rates as high as when using frontal face images.

Index Terms—Face detection, boosted cascade classifiers, range
images, real-time, 3D face recognition

I. INTRODUCTION

Face recognition based on 2D images was the main focus of
researches regarding face biometrics for many years [1]. The
potential of the 3D face recognition to solve classical 2D face
recognition problems that have endured for all those years [2],
such as illumination and pose, led to an increased interest in
the development of 3D face recognition systems.

Despite the advantages, hardware technology for 3D data
acquisition presents limitations: laser scanners are slow and ex-
pensive; stereo-based sensors are inaccurate and demand high
computational resources; structured light-based sensors have
specific environment requirements; and time-of-flight cameras
only capture low resolution images. Recent advances in 3D
acquisition devices based on structured light using patterns
invisible to the naked eye, such as the PrimeSensor1 and the
Kinect sensor2, present a good combination of speed, price,
accuracy and usability. This new generation of 3D sensors is
able to capture up to 60 frames per second of 3D data. Thus,
computer vision systems (e.g. face recognition) have a higher
demand for real-time 3D processing techniques.

Face detection is critical in fully automatic face recognition
systems [1], [3], [4]. This problem has been solved using
or adapting 2D face recognition techniques. Some works
employed 2D face detection techniques to locate the face when
the color information was also available, such as skin color
segmentation [5] and boosted cascade classifiers [6], [7]. Other
works adapted 2D techniques to directly locate the face in

1http://www.primesense.com/
2http://www.xbox.com/kinect

the 3D image, such as horizontal and vertical projections [8],
ellipse detection [9], [10], eigenfaces [11] and boosted cascade
classifiers [12], [13].

In this work we also adapt the 2D detection technique
based on boosted cascade classifiers [4] to directly locate
faces in 3D images, as in [12], [13]. We chose this technique
because it is one of the most successful techniques for face
detection in the literature, and it presents a good cost-benefit
regarding computational cost, detection rates and amount of
false positives, even for images containing unknown faces and
environments (i.e. not included in the training set).

The main contribution of this work is the reduction of
the complexity in the search stage, which is achieved by
eliminating the need to look for faces in different scales. To
this end, we created a projection image for an input range
image that ignore the focal length parameter and obtain faces
with the same size as result. By estimating the face size, it is
possible to locate all the faces in a single image scan and in
real-time.

We also propose an approach for face detection over pose
variation using the same boosted classifier employed for frontal
face detection. In order to do that, we first create projection
images from different viewpoints for each input range image.
Then we apply the frontal face classifier in all projection
images and locate faces even when they present self-occluded
parts.

In our experiments, we used the Face Recognition Grand
Challenge (FRGC) database3 and the Binghamton University
3D Facial Expression (BU-3DFE) database [14], since they
have been extensively used for researches regarding 3D face
analysis [5], [9], [15]–[18] and contain faces with different
locations, facial expressions and resolution. We also used
images acquired by the Kinect Sensor to show the applicability
of our approach to real-time low-cost low-resolution devices.

The remainder of this paper is organized as follows: first
we discuss related works and introduce the proposed face
detection approach in Section II; details regarding experiments
and results are discussed in Section III; finally, we present our
conclusions in Section IV, followed by the references.

3http://face.nist.gov/frgc/
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Fig. 1. Illustration of the perspective projection influence in the face size (a) when compared with direct projection (b).

II. 3D FACE DETECTION USING BOOSTED CASCADE
CLASSIFIERS

A. Face Detection using Boosted Cascade Classifiers

There are two main stages in a face detection system:
training and detection. In the training stage, a classifier is
designed to distinguish between face and non-face images.
Then, the obtained classifier is applied to classify image
regions as face or non-face in the detection stage.

The technique proposed by Viola and Jones [4] is based on
very simple features known as Haar features, which are rect-
angular masks with different size, shape and location. When a
Haar mask is applied over images of a same pattern, such as
faces, their values tend to be close. However, a single feature
is not enough to discriminate complex patterns, so several
features are combined in order to obtain a strong classifier.
To find discriminative features, a training set containing face
and non-face samples is required. All possibilities of Haar
features are tested using this training set, and the Adaboost
algorithm [19] is employed to select the most discriminative
features.

Since almost all sub-regions of a regular image are non-
face sub-regions, the features selected for face detection are
divided in weak classifiers and organized in cascade to speed
up the detection process. The cascade is organized in a way
that the first weak classifiers contain fewer features than the
following ones. To be selected as a face, an image subregion
must be accepted by all weak classifiers; otherwise it will be
considered as non-face.

The cascade classifier is then used to detect faces in an
input image by scanning the image with a sub-window and
applying the obtained classifier on it. To detect faces in any
scale, the sub-window and the features in the cascade classifier
are scaled in small steps until they reach the input image size.

B. Related Works

Böhme et al. [12] and Fischer et al. [13] employed the
previous technique to detect faces in range images. In both
works distinct cascade classifiers are created for each intensity
and range images and combined in different ways to improve
detection results. There were no changes in the Viola and
Jones’ technique, they just trained a classifier and performed
face detection using different input information.

In this work, we do not just use range images as additional
information to the original detection technique. We also used
such information to improve the detection process in a way
that it is only possible when the range data is available. We
propose a scale-invariant representation of the range image that
eliminates the need for scanning an input image in multiple
scales. By doing so, it considerably speeds up the detection
stage. We also use the range data to adjust and detect faces
with pose variation using a single cascade classifier.

C. Improving Face Detection

As shown in Figure 1, the camera perspective changes the
real size of the objects. Two frontal faces F1 and F2 with
the same size are shown in Figure 1(a), and their respective
sizes S1 and S2 in the IMAGE are different when captured
using a focal length f. For this reason, even knowing that faces
have similar sizes in the real world, a face detector must scan
an input image with different sub-window sizes to be able to
detect all faces contained on it.

As a way to solve this problem, we build a projection image
that maps X and Y axes of the range data into the columns
and rows of the projection, respectively, as illustrated in the
Figure 1(b). As such, objects of similar sizes in the real world
have similar sizes in the projection image. So there will be no
need for scanning the projection image looking for faces in
multiple scales.



The first step to estimate the face size in a projection image
is to determine the face size in the real world. As it may be
seen in Figure 2(a), the face size is about five times the distance
d between inner eye corners. We computed the distance value
d for all images in the training set of the FRGC database
using inner eye corners and outer eye corners, as shown in
Figure 2(b), and in both cases the mean value of d is about 33
millimeters. So, the mean face size is about 165 millimeters.
This value is not critical and may be applied to other databases,
since it is an attribute of the human face and is not peculiar
to the FRGC database.

(a)

(b)

Fig. 2. Illustration of the face size employed in this work (a) and the histogram
of the distance between inner and outer eye corners of all FRGC training
images (b).

The second step is to stipulate the resolution value. The face
size in the projection image is proportional to the resolution
value. Thus stipulating the resolution means choosing the de-
sired face size in the projection images. In this work we set the
resolution value in a way that all faces in the projection image
have the size of the faces used for training. In the literature [4],
[20], efficient cascade classifiers were successfully obtained
during training stage using face images with sizes ranging from
18×18 to 24×24 pixels, so we used face images with 21×21
pixels. A face with 165 millimeters projected in a 21 × 21
image results in a resolution value r close to 0.13 pixels per
millimeter.

The projection image g is then created by mapping each

pixel p in the input image into the projection image using the
following Equations 1-3:

rowp =
maxY − Yp

r
(1)

columnp =
Xp −minX

r
(2)

g(columnp, rowp) =
Zp −minZ

r
(3)

where Xp, Yp and Zp are the X , Y and Z coordinates of p,
maxY is the maximum Y value allowed in g, and minX and
minZ are the minimum X and Z values allowed in g.

By applying Equations 1-3 to all pixels of an input image,
we obtain a projection which may contain holes that may sub-
stantially affect the detection results, as reported by Colombo
et al. [11]. To fill the holes, we assign the nearest neighbor
pixel value to blank pixels which are close to regions with
valid data, as shown in Figure 3. We also apply a 3× 3 mean
filter in the resulting projection to reduce the noise.

(a)

(b) (c)

Fig. 3. Original range image (a) and the resulting projection image before
(b) and after (c) hole filling.

The detection stage is performed by scanning the projection
image using a 21 × 21 sub-window. In order to deal with
multiple detections, we perform two steps similar to [4]. First
all detections are divided into disjoint groups of detections by
analyzing the overlapping area between detections. Then we
compute the median location for each group and use it as the
final detection of this group.



D. Detecting Faces over Pose Variation

One of the advantages of using range data for face detection
is the possibility of using pose adjustments in the detection pro-
cess. To this end, we create other projection images (IMAGE’
in Figure 4) with different viewpoints for each input range
image. Then, we apply the frontal face cascade classifier to
all projection images and deal with detections in different
projection images as being multiple detections.

Fig. 4. Illustration of two projection images IMAGE and IMAGE’ with
different viewpoints.

The same scheme may be used to improve face detection
for frontal faces only. In order to achieve that, projection
images with slightly different viewpoints are created in order
to overcome small pose variations.

III. EXPERIMENTAL RESULTS

We used the FRGC and BU-3DFE databases to evaluate
the performance of our face detection approach. The FRGC
database is divided into training and validation sets containing
943 and 4,007 images from 275 and 466 subjects, respectively.
Images have the size of 640× 480, with an average of about
97,000 valid points and about two points per millimeter. Eye
corners were manually marked in all FRGC images to provide
a ground truth location of the face to be able to extract faces
of the training set and to evaluate the detection results of the
validation set. The BU-3DFE database contains 2,500 images
from 100 subjects, and its face images present high facial
expression variations. This database provides surface meshes
with 20,000 to 35,000 polygons and the ground truth location
for the eye corners, and the models are not necessarily frontally
posed.

In this work, a detected face is considered correct if its
location error is smaller than 15% of the face size. This
error threshold, which is empirically defined, is employed to
guarantee that both eyes are inside the detected face square,
as may be seen in Figure 2.

We compared our detection approach against the Viola and
Jones’ detector available in the OpenCV Library4 because
it has been employed or suggested by 2D and 3D face
recognition works in the literature [1], [6], [15]. This baseline

4http://opencv.willowgarage.com/wiki/FaceDetection

approach is the state-of-the-art for face detection on intensity
images with the best cost-benefit regarding detection accuracy,
false detections and computation time. The FRGC database
provide color and range images, so we used the range images
to evaluate the proposed approach and their respective color
images to evaluate the baseline approach5.

A. Training results

The same set of Haar features used for training in the base-
line approach [20] was employed in this work. The cascade
classifier was trained using 943 faces extracted from the FRGC
training set as face samples. Other image parts from this same
set and a set of 3,019 intensity non-face images6 are used as
non-face samples. The intensity images were included as non-
face samples to make the classifier robust against unknown
patterns.

The target detection and false-positive rates were 0.999 and
10−6 respectively, and the training stage reached the target
after adding only six weak classifiers to the cascade classifier,
with a total of 32 Haar features. The small size of the obtained
cascade classifier also contributes to a gain in speed, and
it is achieved because range images are more invariant (i.e.
illumination and pose) than intensity images.

B. Detection results

In our first detection experiment, we used the FRGC valida-
tion set to compare the proposed approach against the baseline
approach. As presented in Table I, we obtained an equivalent
detection rate even with a considerably lower false detection
rate and a computation time of 97% faster.

TABLE I
FACE DETECTION RESULTS FOR THE FRGC VALIDATION SET USING THE
BASELINE APPROACH AND THE ORIGINAL AND ENHANCED VERSIONS OF

THE PROPOSED APPROACH.

Method Det. rate False det. rate Time (sec)
Baseline 99.4% 13.5% 0.295

Proposed approach 99.3% 0.0% 0.008
Enhanced approach 99.9% 0.02% 0.038

The huge difference between computation time of baseline
and proposed approaches is due to two reasons. The first one
is the cascade classifier, which is considerably simpler when
range images are used for training. The second reason is the
optimization of the scanning stage, since the baseline approach
has to include the scale parameters during the search, while
the dimensions of the object to be detected are already known
in the proposed approach.

As far as complexity is concerned, the scanning stage for
an image with N pixels is O(N

√
N) in the baseline approach

(i.e. each scan is O(N) and it is done for up to
√
N different

scales). In the proposed approach, the complexity is only
O(M), where M is the amount of pixels in the projection

5Results were obtained with the following configuration: cascade = haarcas-
cade frontalface alt.xml; scale factor = 1.1; min neighbors = 2; min size
= 40× 40; flags = CV HAAR DO CANNY PRUNING

6http://tutorial-haartraining.googlecode.com/svn/trunk/data/negatives/



image. The creation of the projection image is O(N), so the
final complexity of the proposed approach is O(M+N), which
is still less complex than the baseline approach.

After that, we tested the scheme proposed in subsection II-D
to ease small pose variations when detecting frontal faces.
In this enhanced version of the proposed approach, five pro-
jections are created for each input image and then used for
face detection: one projection using the original viewpoint,
and four new projections using viewpoints with −5 and +5
degrees of inclination in Y and Z axes. X-axis variations were
not considered because they do not considerably affect the
projections (i.e. face symmetry is preserved). The results for
this enhanced approach (Table I) show an improvement in
detection rate, false detection rate and computation time in
comparison to the baseline approach.

Then we evaluated the performance of the proposed ap-
proach using large pose variations. To this end, we applied a
random rotation in the Y-axis between −45 and +45 degrees
in 200 images of the validation set and removed self-occluded
points, as exemplified in Figure 5. Then, we employed the
same scheme of using different viewpoints to overcome the
pose variation problem. In this case, we created nine projec-
tions of the original image using −40, −30, −20, −10, 0, +10,
+20, +30 and +40 degrees of inclination in the Y-axis. In this
experiment we were able to detect the face in all images and
there were no false positives either, with an average time of
0.062 seconds.

(a) (b) (c)

Fig. 5. FRGC image rotation: original image (a), rotated image (b) and
rotated image in the original pose (c).

As it may be noticed, we obtained detection rates with
rotated face images as high as with frontal face images. As
a result, we concluded that it is possible to detect faces pre-
senting large pose variations using a single cascade classifier.
Viewpoints with inclination higher than 45 degrees were not
considered because almost half of the face is self-occluded and
will require further handling.

Since the pose variation of the BU-3DFE models is un-
known, we used the proposed approach to detect faces pre-
senting variations in multiple axes in our final experiment.
We considered inclinations of −10, 0 and +10 degrees in all
axes, totaling 27 different viewpoints. The results are shown
in Table II, and we obtained a considerable improvement in
the detection rate when using the enhanced version to deal
with pose variation. This experiment shows that the proposed
approach may be used to detect faces in arbitrary poses (i.e.
if there is no self-occlusion issues). Our detector may also

be employed to head pose estimation by saving the viewpoint
each face was detected.

TABLE II
FACE DETECTION RESULTS FOR THE BU-3DFE DATABASE USING

ORIGINAL AND ENHANCED VERSIONS OF THE PROPOSED APPROACH.

Method Det. rate False det. rate Time (sec)
Proposed approach 21.5% 0.1% 0.007
Enhanced approach 99.9% 0.1% 0.180

Finally, our face detection approach may be employed
to images acquired from different devices with no major
changes, perhaps requiring additional background range im-
ages to create a stronger classifier. Figure 6 shows an example
of applying the obtained cascade classifier to detect faces in
images acquired by the Kinect sensor. As shown, there are
faces with different sizes in the intensity image, and they have
the same size in the projection image.

(a)

(b)

(c)

Fig. 6. Examples of color (a) and range images (b) acquired by the Kinect
sensor, and results of face detection using the baseline approach (a) and the
proposed approach (c).

The experiments were performed in an Intel Core 2 Duo
2.40GHz processor, and the computation time of all varia-
tions of the proposed approach allows its use in real-time
applications. Since the enhanced versions consist of multiple
runnings of the original approach, they may be parallelized
on multiple processors. The projection image creation and
face detection stages may also be parallelized on graphics
processing units [21], and the time required for our detectorto
be performed may be considerably reduced.



IV. CONCLUSION

We have presented our approach for face detection using
boosted cascade classifiers of Haar features, by adapting a
well-known approach for 2D face detection [4] to range
images. We improved the detection stage by eliminating the
scale parameter during the search, and also proposed a scheme
for detecting faces presenting large pose variations.

We used the FRGC and BU-3DFE databases in our ex-
periments to evaluate the proposed approach. Although none
of the two databases contain images with multiple faces or
complex background patterns, they help to prove the concept
of using range information to detect faces in a faster and more
reliable way. We also used images acquired by the Kinect
sensor to show that our detector works with background data
and multiple faces.

We compared our results against a state-of-the-art face
detector and obtained equivalent detection rates. However, we
obtained a considerably smaller amount of false detections
and a 97% faster computation time. We also used range
information to adjust small pose variations and obtained better
face detection rates. Then we used pose adjustment to deal
with images presenting large pose variation, and obtained a
detection rate as high as when using frontal face images.

The computation time of all variations of the proposed ap-
proach allows their use in real-time applications. This detector
may also be employed to detect other patterns in range images,
such as facial features, the upper body or even the full body,
only requiring estimates of the object dimensions in advance.

Finally, our object detector using range images presents
significant advantages: 1) it is faster, since input images are no
longer scanned in multiple scales; 2) it is more reliable, since
range images are more invariant than intensity images and a
single scale scan reduces the amount of non-object image parts
to be tested; 3) it is robust to pose variation; 4) it may be used
to pose estimation; and 5) it is highly parallelizable.
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