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Abstract

We present a 3D face reconstruction system that
takes as input either only one single view or several dif-
ferent views. Given a facial image, we first classify the
facial pose into one of five predefined poses, and then
detect two anchor points that are then used to detect
a set of predefined facial landmarks. Based on these
initial steps, for a single view we apply a warping pro-
cess using a generic 3D face model to build a 3D face.
For multiple views, we apply sparse bundle adjustment
to reconstruct 3D landmarks which are used to deform
the generic 3D face model. Experimental results on the
Color FERET database confirm our framework is ef-
fective in creating realistic 3D face models that can be
used in many computer vision applications, such as 3D
face recognition at a distance.

1. Introduction

We propose a method to generate realistic 3D faces
using a single or multiple facial images. Structure-
from-motion techniques for multiple facial images do
not apply directly [1]. Accurate estimation of head-
camera motion depends on a number of accurate cor-
respondences. However, outliers that we cannot avoid
in low-resolution facial images may lead to large errors.
Since the accurate head-camera motion is a prerequisite
for accurate 3D reconstruction, building a reasonable
3D face model from low-resolution images is a very dif-
ficult problem. Statistical model based methods [2, 3]
have been applied for single or multiple images, which
require a large training database, a critical initialization
step and many parameters needed to be tuned carefully.

Our framework generates a 3D face efficiently us-
ing facial features. We first classify the facial pose into

one of five predefined poses, and then detect two an-
chor points that are then used to detect facial landmarks.
Based on the detected set of landmarks, we apply a
warping process to a generic 3D face model, in order to
build a 3D face for a given single view. In case of multi-
ple views, we use sparse bundle adjustment (SBA) [4] to
reconstruct 3D landmarks from a set of 2D landmarks.
The generic 3D face model is deformed by the recon-
structed 3D landmarks and pre-defined 3D landmarks.
The warp module, following the deformation, produces
a realistic 3D faces which are consistent with the input
images.

One of the key issues is finding facial features in the
presence of large pose variations. We apply a “divide
and conquer” strategy to solve this difficult problem: we
classify the facial pose in a first step, then apply a view-
based approach for the landmark detection step. This is
similar to [5] but we detect two anchor points for each
view. These anchors provide a strong constraint for the
landmark detection, which produces reliable results.

We evaluate the performance of individual mod-
ules, including pose/anchor detector and landmark de-
tector, with the Color FERET and CMU multi-PIE
databases [6, 7]. Visual assessment on the reconstruc-
tion results with single and multiple views confirms the
appropriateness our methods.

2. System Overview

Our system consists of three parts as shown in Fig. 1:
(1) landmark extraction modules, (2) 3D reconstruction
for single images, and (3) 3D reconstruction for mul-
tiple images. The landmark extraction module consists
of pose classifier, anchor detector, and view-based land-
mark detectors. Both reconstruction parts use the warp-
ing module and the 3D reconstruction module for mul-
tiple images includes the sparse reconstruction and the
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Figure 1. System Overview.

deformation module. The output is a 3D face model
which can be rendered from any point of view.
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Figure 2. Pose/anchor detection results.

2.1 Pose Classification and Anchor Points De-
tection

To classify faces across different poses, we use five
boosted cascade face detectors: two standard classifiers
available in OpenCV (haarcascad frontalface alt2.xml
and haarcascade profileface.xml) and three classifiers
we designed to detect specific poses (frontal, half-
frontal, profile). The specific classifiers were obtained
by training Haar cascades using 3019 background im-
ages and a set of face images for each pose (2409 for
frontal, 505 for half-frontal, 2007 for profile). The spe-

cific classifiers are more efficient than the generic clas-
sifiers for pose classification, but the generic classifiers
are better for face location purposes. In this first stage,
the detection results for these five detectors have the fol-
lowing output: 1) face location and pose, if the face
was detected by a specific classifier; 2) face location,
if the face was detected only by a standard classifier;
3) nothing, if the face was not found. When the face
is detected but its pose cannot be defined in the first
stage, the face is then submitted to another appearance
recognition technique to obtain its pose. The appear-
ance recognition technique employed in this stage is the
Principal Component Analysis (PCA) [10]. In this ap-
proach, a set of face images that have their poses al-
ready known are used in the training stage and each
probe image is compared to all images in the training
set; the pose of the closest training image is assigned to
the probe image. Due to the dimensionality reduction
provided by PCA, this can be performed in real time for
large training sets.

Two different training sets were created by using the
generic classifiers employed in the first stage. Face im-
ages of the ColorFERET database were extracted us-
ing the bounding square obtained by the generic classi-
fier response, and the resulting images were resized to
20 × 20 pixels and used for training. The first generic



Figure 3. Landmark detection results.

classifier extracted 2716 frontal faces, 242 faces of half-
frontal and 9 profile faces. The second one extracted
601 frontal faces, 478 faces of half-frontal and 1121
profile faces.

The PCA dimensionality reduction was set to map
90% of the data variation, resulting in 32 axes for the
first training set and 21 axes for the second one. This
amount of data variation is typically employed [10] be-
cause it provides a good cost-benefit between dimen-
sionality reduction and recognition results. The final
result is 97% of correct pose classification, i.e., 5110
images for the entire ColorFERET database (5234 im-
ages). Boosted cascade classifiers were also employed
to locate landmarks in faces already detected and clas-
sified (Fig. 2).

For each desired landmark, a region involving its lo-
cation is extracted from the face image and used as pos-
itive instance for training. The region extracted is also
removed from the input image and the resulting im-
age is used as background for training. With these im-
ages, we create classifiers able to extract the desired an-
chors. This procedure was applied to all anchors shown
in Fig. 2 producing 99% of correct landmark detection.

2.2 Facial landmark detection

We use a view-based approach to handle pose vari-
ations. The range of rotation angle (yaw) is 90 to +90.
Facial views are defined as frontal, half-frontal, and pro-
file. For each classified view, we apply a landmark de-
tector. The individual detector consists of a shape model
and a texture model [9]. The shape model is defined
a linear combination of some basis shapes which are
trained by principal component analysis and a set of
training shape database. The texture model includes a
set of individual detectors that respond to special loca-
tions of facial features such as lip corner and eye corner.
The module finds the optimal location of landmarks in
terms of a combination of shape information and tex-
ture information. It finds the best shape that has the

minimum distance between shape model and individual
texture feature point detector.

Fig. 3 shows a set of landmark detection results on
five views from +90 degree to −90 degree view. The
markers (plus) show the detected landmark locations.
Each view has a definition of the landmarks. The total
number of landmarks is 47 (frontal: 42, profile: 18).

We evaluated our landmark detection modules. The
error is defined as the average Euclidean distance be-
tween ground truth points and estimated points, whose
values are normalized by a reference eye distance (32
pixel). The average errors obtained in our experiments
are: frontal 1.95 pixels; half-frontal 3.5 pixels; and pro-
file 2.2 pixels.

Figure 4. Sparse 3D Reconstruction of
Landmarks.

3. 3D Face Reconstruction

3.1 Warping

To obtain a precise texture warping, a generic model
is aligned to the probe face using the landmarks pre-
viously obtained. To do that, we use the Levenberg-



Figure 5. A warping result using a sin-
gle input image (bottom) and a 3D recon-
struction result using the sparse recon-
struction and deformation (top)

Marquardt iterative minimization approach [8], to ob-
tain the best transformation between landmarks of the
generic model and probe image. A pre-alignment can
be obtained by using center of mass and the result of
the pose classification. After that, the points of the
generic model are projected into the probe image using
the obtained transformation, and occlusions are over-
come through the use of symmetry.

3.2 3D Landmarks Reconstruction

Given a set of facial images, including some pose
variations, we can compute 3D facial landmarks by tri-
angulating the 2D landmarks extracted from multiple
images. This is not accurate enough in practice, we
therefore use a sparse bundle adjustment (SBA) algo-
rithm [4] to refine the 3D landmark points and the cam-
era parameters as shown in Fig. 4.

We evaluated the performance of our sparse recon-
struction using a subset of multi-PIE database [7]. We
selected 80 subjects with 5 different views as the same
as our view definitions. The total number of images is
400. The average re-projection error across all land-
marks for all 80 subjects was 1.34 pixels.

3.3 Deformation

In this stage, the deformation between landmarks of
a 3D generic model and the same landmarks of an in-
put face is mapped through Thin Plate Splines [11].

Both landmark sets must be pre-aligned to avoid map-
ping variations in translation, rotation and scale as de-
formation. After mapping the deformation, the ob-
tained transformation is applied to all points of the the
generic model to obtain a final deformed model of the
input face. Fig. 5 shows 3D reconstruction results us-
ing a single input image and 5 images. The nose areas
clearly show the difference of quality between the two
approaches. Some distortion can be seen in the warping
result using a single image.

4. Conclusion

We presented a framework to build a realistic 3D
face from a single or multiple facial images. We first
classify the facial pose, detect two anchor points, and
then detect facial landmarks. For a single view, we use
warping to build a 3D face. For multiple views, we
reconstruct 3D landmarks, deform the generic 3D face
model, and then apply warping. Our approach has been
validated experimentally.
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