
Universidade Federal da Bahia
Instituto de Matemática e Estat́ıstica

Programa de Graduação em Ciência da Computação

A DEEP LEARNING APPROACH TO
RECOGNIZE SOURCE CODE AUTHORSHIP

Roberto Sales Caldeira

TRABALHO DE CONCLUSÃO DE CURSO

Salvador
14 de dezembro de 2018

Universidade Federal da Bahia
Instituto de Matemática e Estat́ıstica

Roberto Sales Caldeira

A DEEP LEARNING APPROACH TO RECOGNIZE SOURCE
CODE AUTHORSHIP

Este Trabalho de Conclusão de Curso foi apresentado ao

Colegiado de Ciência da Computação da Universidade Fed-

eral da Bahia, como requisito parcial para obtenção do grau

de Bacharel em Ciência da Computação.

Orientador: Prof. Dr. Mauŕıcio Pamplona Segundo

Salvador
14 de dezembro de 2018

Sistema de Bibliotecas - UFBA

Sales, Roberto.
A deep learning approach to recognize source code authorship / Roberto

Sales Caldeira – Salvador, 2018.
26p.: il.

Orientador: Prof. Dr. Prof. Dr. Mauŕıcio Pamplona Segundo.
Monografia (Graduação) – Universidade Federal da Bahia, Instituto de

Matemática e Estat́ıstica, 2018.

1. Software forensics. 2. Authorship identification. 3. Deep learning. I.
Pamplona Segundo, Mauŕıcio. II. Universidade Federal da Bahia. Instituto
de Matemática e Estat́ıstica. III T́ıtulo.

CDD – XXX.XX

CDU – XXX.XX.XXX

TERMO DE APROVAÇÃO

ROBERTO SALES CALDEIRA

A DEEP LEARNING APPROACH TO
RECOGNIZE SOURCE CODE AUTHORSHIP

Este Trabalho de Conclusão de Curso foi
julgado adequado à obtenção do t́ıtulo de
Bacharel em Ciência da Computação e
aprovado em sua forma final pelo Programa
de Graduação em Ciência da Computação da
Universidade Federal da Bahia.

Salvador, 14 de dezembro de 2018

Mauŕıcio Pamplona Segundo, PhD
Universidade Federal da Bahia

André Brasil Vieira Wyzykowski, MsC
Universidade Federal da Bahia

Leone da Silva de Jesus, MsC
Universidade Federal da Bahia

RESUMO

Identificação de autoria de códigos-fonte é a tarefa de decidir quem é o autor de um pro-
grama, dado seu código-fonte. Geralmente, tal tarefa é resolvida partindo de um conjunto
de exemplos de códigos previamente coletados, de um conjunto de autores conhecidos.
Existem diversas aplicações para métodos de identificação de autoria de códigos, como
detecção e atribuição de códigos maliciosos, resolução de conflitos de direitos autorais,
detecção de plágio, etc. Assim como em textos em linguagem natural, existem diversas
caracteŕısticas discriminativas num trecho de código, como nomes de variáveis, estilo de
indentação, etc. Algumas dessas caracteŕısticas compõem o estilo de programar de um
autor. Nesse trabalho, investigamos a atribuição de códigos em C++ baseado no estilo de
programar dos autores. Também propomos um modelo baseado em LSTMs que decide
se dois códigos-fonte são do mesmo autor, mesmo que as partes envolvidas não sejam
conhecidas pelo sistema.

Palavras-chave: peŕıcia de software, identificação de autoria, aprendizagem profunda

v

ABSTRACT

Source code authorship identification is the task of deciding who is the author of a pro-
gram given its source code. This is usually based on the analysis of previously collected
samples from a set of candidate authors. There are several use cases for such a method,
including attribution and detection of malicious codes, copyright infringement resolution,
plagiarism detection, etc. As with texts in natural language, there are many distinguish-
ing features in a piece of code, like variable names, indentation style, etc. Some of these
features are part of the coding style of a programmer. In this work, we investigate au-
thorship attribution of C++ source codes based on the coding style of the authors. We
also propose a LSTM-based end-to-end model to decide if two source codes are from the
same author, even if the involved authors are unknown to the system.

Keywords: software forensics, authorship identification, deep learning

vii

CONTENTS

Chapter 1—Introduction 1

1.1 Biometrics and Coding Style . 1
1.2 Motivation . 1
1.3 Applications . 2

1.3.1 Plagiarism Detection . 2
1.3.2 Copyright Infringement . 2
1.3.3 Cyber Attack Identification . 3
1.3.4 Exposing Anonymous Programmers 3

1.4 Challenges . 3
1.5 Related Work . 4
1.6 Contribution . 4

Chapter 2—Methodology 7

2.1 Problem Formulation . 7
2.2 Datasets . 7

2.2.1 Google Code Jam . 7
2.2.2 Codeforces . 8

2.3 Source Code Embedding Model . 8
2.3.1 Coding Style Descriptor . 9
2.3.2 Preprocessing . 9
2.3.3 Neural Network . 10

2.3.3.1 Background . 10
2.3.3.2 CNN Network . 11
2.3.3.3 LSTM Network . 11

2.3.4 Optimization . 13
2.3.4.1 Softmax Cross-Entropy Loss 13
2.3.4.2 Triplet Loss . 13

Chapter 3—Evaluation 17

3.1 Training and Selection . 17
3.2 Matching Two Unknown Source Codes 18
3.3 One-to-Many Author Identification . 19

Chapter 4—Conclusion 21

ix

LIST OF FIGURES

2.1 Overview of style descriptor generation pipeline. 9
2.2 A quick view on the internals of an LSTM. 10
2.3 The architecture of the LSTM-based model. 12
2.4 The region in red represents the margin area beyond p with diameter α.

Before loss optimization (a), the negative pair is closer than the positive.
During loss optimization (b), the negative pair is pushed further than the
positive, but n is still in the margin area. After loss optimization (c), the
positive pair is finally closer and n is beyond the margin. 15

2.5 Overview of network optimization pipeline. 15

3.1 ROC curve for each pair of classifier and dataset version. 18
3.2 128-dimensional descriptors from 12 authors generated by the LSTM model,

trained and test on the clang test set. Each author is represented by a dif-
ferent color. The descriptors were embedded into a two-dimensional space
with t-SNE. 20

xi

Chapter

1
INTRODUCTION

Programmers often have to choose between tabs and spaces, between while and for loops,
between positioning the open bracket in the current line or in the next, etc. These are
some of the choices that can be regarded as coding style. Are these choices distinguishing
features? In this chapter we will discuss what is style-based source code authorship
identification, what challenges it poses, what has been done and what it is useful for. We
will also introduce our contributions on the subject.

1.1 BIOMETRICS AND CODING STYLE

Biometrics is the field of computer vision that studies how certain human characteristics
can be used to distinguish individuals. Even though physiological characteristics such
as fingerprint, iris and face are probably the first ones that come to mind, the study of
behavioral characteristics such as typing rhythm, voice, signature and writing style have
brought new means of distinguishing people. Even though using behavioral character-
istics effectively has been made possible throughout the years, the fact that behavior is
way more susceptible to change than physiological characteristics poses a big challenge
(BOLLE et al., 2003).

Identifying authors of texts based on their writing styles is not a new topic (MENDEN-
HALL, 1887). Throughout the years, computing has evolved and machine learning has
reached its peek. Narayanan et al. (2012) made it possible to identify the author of blog
texts among tens of thousands of writers, achieving 25% accuracy at identifying the au-
thor of a text over 100,000 candidate authors. It was not long until other works managed
to distinguish programmers by their coding styles (CALISKAN-ISLAM et al., 2015).

1.2 MOTIVATION

In this work, we mainly consider the task of an investigator interested in deciding whether
two anonymous pieces of code were authored by the same programmer or not. The actual
authors of these pieces of code may be unknown to the investigator. Also, these codes

1

2 INTRODUCTION

may aim to solve different problems, therefore the investigator intends to distinguish
them solely based on stylistic features of such pieces. We also consider another scenario
in which the set of possible authors is known to the investigator and labeled samples for
each author are available.

We approach these problems from a deep learning perspective, training a deep neural
model that can be subsequently used to solve authorship of source codes and applying it
to the different scenarios an investigator can face.

1.3 APPLICATIONS

Resolving source code authorship has a few real-world applications both in industry and
academy. Although we have not directly studied those, in this section we briefly describe
a few of them.

1.3.1 Plagiarism Detection

Plagiarism can be generally defined as the unauthorized re-use of the work of another
individual. Source code plagiarism is a widespread problem in academic institutions.
Checking for plagiarism manually is time-consuming and not extremely effective, becom-
ing impractical as the size of the code base increases.

Although automatic source code plagiarism detection is a recurring and well-studied
problem (MARTINS et al., 2014), the approaches consolidated by widely used tools
such as MOSS (SCHLEIMER et al., 2003), Sherlock (JOY; LUCK, 1999) and JPlag
(PRECHELT et al., 2000) are mainly based on code similarity metrics. Such metrics,
however, are highly correlated to the task the code was written to solve.

For example, consider the specific case of ghostwriting, in which a student claims the
authorship of a code that was neither written by him nor copied from a classmate, but
was actually written by another person (a former student, for example). It may not be
possible to compare the suspicious code with another code made by the actual author,
since the ghostwriter may not be known. On the other hand, if other pieces of code of
the accused party are available, it is possible to determine if his coding style matches the
coding style present in the suspicious code.

1.3.2 Copyright Infringement

Software forensics is the science of examining source code and binary code in order to iden-
tify, preserve, analyze and present facts and opinions about pieces of software. Although
it can also be used in civil proceedings, it is most often associated with the investigation
of a wide variety of computer crimes, one of which is copyright infringement.

Code correlation analysis plays an important role at copyright disputes. In this case,
an analyst has labeled codes from the involved parties and the task of determining if
there was infringement or not.

1.4 CHALLENGES 3

1.3.3 Cyber Attack Identification

Cyber attack identification is a powerful application of software forensics in cyber security.
Files left behind by an intruder during a cyber attack may have just enough information
for an analyst to identify who the intruder is or to relate such an attack to a previous
incident. Therefore, comparing the coding style of the attacker to those from authors of
previous attacks or authors of public code repositories is of great interest to the analyst.

1.3.4 Exposing Anonymous Programmers

Although there are many helpful applications of source code authorship identification,
systems capable of de-anonymizing programmers pose a threat to those who want to
remain anonymous, in special for anonymous open source contributors (DAUBER et al.,
2017). There may be good reasons for a programmer to be anonymous, like working in a
software a hostile government does not like.

An example of a famous open source anonymous programmer is Bitcoin’s creator,
Satoshi Nakamoto. If we had a set of labeled codes from programmers that are likely to
be Nakamoto, we could try to match their coding style to the early versions of Bitcoin,
of course, assuming that Nakamoto didn’t try to obfuscate his own coding style.

1.4 CHALLENGES

Although comparison metrics have been shown to work well for source codes, extracting
features that encode the author’s style and, therefore, are independent of the task being
solved have shown to be challenging. For example, features such as methods and variables
names can often be misleading. This task gets even more challenging as we need to select
features that are steady across different programs and capable of distinguishing between
programmers. In this work, we propose an end-to-end model that solves this problem.

Also, the environment the programmer is inserted can heavily affect the difficulty of
the task. For example, in projects that have a rigid style guide to be followed, much less
of the programmer’s own coding style might prevail. We don’t study the impact of such
environments in this work. Moreover, in multi-contributor projects, usually powered by
VCS (version control systems), certain pieces of code can contain contributions of many
authors, turning the task of relating a single author to the style present on such piece
very hard. Although we believe our contributions can be applied to multi-contributor
environments, we leave this for future work.

In each of the mentioned applications, the claimed author may act adversarially and
try to actively modify the coding style of the program. In the ghostwriting scenario, the
involved parties may act together to make the style of the code written by one to match
the other’s. During a cyber attack development, an attacker may explicitly try to hide
his own coding style. In a copyright infringement, the suspect may modify the code to
match his own style. In this work, adversary interference is not considered.

4 INTRODUCTION

1.5 RELATED WORK

Spafford and Weeber (1993) were among the first that suggested attributing source code
based on style. Even though they suggested a lot of features, they did not propose an
automated method nor a thorough analysis on how those features were useful. Hayes
and Offutt (2010) examined the conjecture that programmers are unique and that this
uniqueness can be observed in the code they write. They conducted an experiment with
programmers and graduate students, and found that programmers do have distinguishable
style features that are consistently used.

Ranking approaches to source code authorship attribution were proposed by Bur-
rows and Tahaghoghi (2007), Burrows et al. (2007, 2009) and Frantzeskou et al. (2007).
Burrows and Tahaghoghi used an information retrieval technique to solve the task, ob-
taining token-level n-gram representations of the source codes, building an index from
these representations and querying that index for programs with unknown authors. The
authors of the top-ranked programs were considered the authors of the queried program.
Frantzeskou et al. used byte-level n-gram features to tackle the problem. An author pro-
file is composed of the most frequent n-grams in training data of that author. Then, the
author of an unclaimed program is considered the one with the most common n-grams
to this code. Both works achieved high accuracy on very small suspect sets but did not
scale well.

Use of abstract syntax trees (ASTs) for authorship attribution was first introduced by
Pellin (2000). Caliskan-Islam et al. (2015) have proposed using fuzzy ASTs and random
forests to classify authorship of source code. Moreover, they proposed a coding style
feature set for C/C++ source codes and a dataset for authorship attribution, based on
Google Code Jam, which is a programming competition that resembles laboratory condi-
tions. Dauber et al. (2017) showed that Caliskan-Islam et al. results could be extended to
previously unexplored conditions, by adapting their techniques to work for small blocks
of code of GitHub repositories.

Macdonell et al. (1999) introduced neural networks to the subject by using feed-
forward neural networks and multiple discriminant analysis to attribute source codes.
Bandara and Wijayarathna (2013) studied how deep neural networks could be competitive
to previous methods given enough training data. Alsulami et al. (2017) applied LSTMs
to the AST structure of a code.

1.6 CONTRIBUTION

In this work, we introduce the concept of coding style descriptors, which are compact
representations that capture distinguishing stylistic features of a source code. We propose
an end-to-end deep model that produces coding style descriptors from source code. Then,
we study how the generated descriptors encode meaningful properties to the source code
attribution problem by solving many of its variations.

We also introduce the Codeforces dataset for source code attribution, a C++ dataset
with more than 30,000 samples extracted from Codeforces, a website specialized in holding
online programming competitions. We briefly describe how the dataset was constructed

1.6 CONTRIBUTION 5

and how it differs from previously published datasets.

Chapter

2
METHODOLOGY

In this chapter, we present a formulation for the source code attribution problem (Section
2.1), we describe how the Codeforces dataset was assembled (Section 2.2) and present an
end-to-end model to solve the problem (Section 2.3.3).

2.1 PROBLEM FORMULATION

Although there are many variations of the source code attribution problem, in this chapter
we will focus on one of them. In Chapter 3, we analyze a variation of the problem.

Given two source codes A ans B, we want to determine if A and B were written by
the same programmer. For that end, we have a dataset of source codes labeled with their
authors, which can be used to train a classifier. However, the authors of A and B are not
necessarily represented in the training set.

2.2 DATASETS

The first step to develop an effective deep learning model is to gather enough training
data. In this work, we decided to work with C++ source codes written in a laboratory
environment – we assume the whole code is written by the author under no external style
enforcement such as a style guide.

2.2.1 Google Code Jam

Although there are many public C++ laboratory datasets, the Google Code Jam1 dataset
(CALISKAN-ISLAM et al., 2015) is probably the biggest of them all. Samples from this
dataset are collected from previous editions of Google Code Jam, an annual programming
competition held by Google. In this competition, participants are given algorithmic tasks
to be solved in a limited amount of time. Thus, it is very likely that code written by a
participant manifests his own coding style. This dataset was not explicitly distributed

1〈https://codingcompetitions.withgoogle.com/codejam〉

7

8 METHODOLOGY

by its creators, but instead a script to download the samples from each year of the
competition was made public2. We ran this script, packaged the downloaded samples
from 2014 and released them. We will refer to this as Google Code Jam’s 2014 dataset.

Google Code Jam holds nearly 10 rounds every year. Most of these rounds are elim-
inatory. Thus, the availability of samples from less experienced participants is expected
to be low. If we want to build a balanced training set not biased by the way experi-
enced participants code, we are limited by the small amount of code less experienced
participants wrote.

Although this dataset was not extensively used throughout the development phase, it
was a reference for the Codeforces dataset introduced in Section 2.2.2.

2.2.2 Codeforces

Codeforces3 is a website specialized in holding online programming contests. Contest
format is similar to Google Code Jam’s, but they are not eliminatory. Thus, we are able
to find a lot of samples from both non-experienced and experienced users.

We wrote a Python script that receives target constraints for the dataset and scrapes
Codeforces for samples. Using this script, we assembled a balanced dataset with 29,600
C++ samples from 2,200 authors, meaning that we have around 13 samples per author.
We restricted the samples to those which satisfied the conditions below:

• There is no other sample from the same author which solves the same problem;

• Author participated in at least 10 official contests;

• Source code was submitted and considered correct during the competition;

• Source code was submitted between 2014 and 2018.

This dataset was packaged and made public4.

2.3 SOURCE CODE EMBEDDING MODEL

In this section, we propose a deep learning model that embeds source codes, from their
string representations, into a denser latent space (Fig. 2.1). In Section 2.3.1, we describe
what is a style descriptor. In Section 2.3.2, we describe the preprocessing source codes
went through before being fed to the model. In Section 2.3.3, we describe the network
architecture used in our work. In Section 2.3.4, we describe how our embedding network
was trained to generate meaningful descriptors.

2https://github.com/calaylin/CodeStylometry
3〈http://codeforces.com〉
4〈http://github.com/rsalesc/TCC〉

2.3 SOURCE CODE EMBEDDING MODEL 9

Figure 2.1: Overview of style descriptor generation pipeline.

2.3.1 Coding Style Descriptor

The performance of machine learning methods is heavily affected by the choice of data
representation. Thus, much of the effort of the machine learning community has been
put into developing algorithms that transform otherwise unmanageable data into repre-
sentations that can be effectively used by learning methods (BENGIO et al., 2013).

A Coding Style Descriptor (hereon referred simply as style descriptor) is a d-dimensional
representation of a source code in a latent space. A latent space is a space where repre-
sentations of similar objects lie close to each other. Therefore, the latent space of style
descriptors should capture stylistic similarities of source codes. Ideally, style descriptors
should encode everything a machine learning model needs to solve the problem posed in
Section 2.1 and its variations. Thus, we can build simpler classifiers for these problems
if we can provide a good embedding function f(x) ∈ Rd, which maps source codes to
d-dimensional descriptors.

Deep feed-forward networks are a natural approach to representation learning. In the
remainder of this chapter, we will mainly study deep learning embedding techniques and
apply them to our problem.

2.3.2 Preprocessing

The model we propose is end-to-end. Thus, the code is minimally preprocessed. Using
Tensorflow static graph, it is not possible to support arbitrary input sizes in a batch.
Therefore, we must crop our source code to a maximum line length M and a maximum
number of lines L, converting it to a L×M matrix of characters. We chose to pick the
last L lines of the code and the first M characters of each line. The positions that do
not correspond to a character in the source code are masked out both during inference
and during optimization. For the models we propose, we chose values of M and L that
incurred the best accuracy while keeping the training time and memory consumptions
affordable.

10 METHODOLOGY

2.3.3 Neural Network

In this section, we first introduce a few important concepts in Section 2.3.3.1, and then
present two neural network architectures considered in this work, one based on CNNs
(Section 2.3.3.2) and one based on LSTMs (Section 2.3.3.3).

2.3.3.1 Background Recurrent neural networks (RNNs) were introduced to solve
the lack of persistence of feed-forward networks. They are networks with loops in them.
They are fed with an external input – a sequence x – and their own output h (Fig 2.2a).
Although generic RNNs are powerful and, in theory, capable of learning any kind of
sequence dependency, in practice they struggle to handle those that are long-term. The
problems of training RNNs with gradient descent were studied by Bengio et al. (1994).

(a) A generic RNN (b) An LSTM cell

Figure 2.2: A quick view on the internals of an LSTM.

LSTM Long Short-Term Memory (LSTM) network is a special kind of RNN in-
troduced by Hochreiter and Schmidhuber (1997). LSTMs were specifically developed
to avoid the long-term dependency problem. It accomplishes that with its special cell
design (Fig. 2.2b). During sequence unrolling, it learns what to remember and what to
forget through carefully regulated gates – depicted as sigmoid layers. Moreover, besides
being fed with its own output, it maintains an internal cell state which helps it to re-
member such dependencies. Although LSTMs usually produce sequences, it is a common
procedure to take only the last produced element as its output.

Given the efficiency of LSTMs, many researchers have focused on studying other
variations of it (GREFF et al., 2015).

Bidirectional LSTM LSTM cells are very good at remembering. However, they
can only infer based on previous elements of the input sequence. A bidirectional LSTM

2.3 SOURCE CODE EMBEDDING MODEL 11

(IRSOY; CARDIE, 2013) is an extension of the usual LSTM that supports inferring
based on both previous elements and subsequent elements of a sequence. It maintains
two hidden layers: one for the left-to-right propagation and other for the right-to-left
propagation. The results of these two passes are combined into a single result, usually
through concatenation or averaging.

LSTM Stacking The sequence produced by a LSTM network can be re-used as
input for another LSTM network. This is called LSTM stacking. As it is the case with
other types of networks, deepening a LSTM network usually improves its performance
(GRAVES et al., 2013). Intuitively, it allows each layer to independently learn different
levels of abstraction.

Char Embedding Layer Neural networks can’t handle discrete types – like chars
– naturally. Hence, we need to map the alphabet Σ of characters of source codes to real-
valued vectors. We could simply convert each char to a |Σ|-dimensional one-hot vector.
As opposed to arbitrarily defining a mapping, we can also let the network learn it (GAL;
GHAHRAMANI, 2016).

The char embedding layer is responsible for learning an embedding fc(x) ∈ Rdc that
maps chars to dc-dimensional vectors. Thus, each char in the source code is converted to
a real-valued vector. Hereon, we will simply refer to char embeddings as chars.

2.3.3.2 CNN Network One of the architectures we use is the one-dimensional CNN
architecture proposed by Zhang et al. (2015). In their work, they show character-level
CNNs can achieve competitive state-of-the-art results on large datasets. First, the char-
acters of the preprocessed input are fed to a char embedding layer (Section 2.3.3.1).
Then, the resulting sequence is fed to a series of one-dimensional convolutional layers.
The convolutional layers of this model can be seen in Table 2.1.

Filters Kernel Pool
256 7 3
256 7 3
256 3 n/a
256 3 n/a
256 3 n/a
256 3 3

Table 2.1: Convolutional layers of the CNN-based model.

Then, two fully-connected layers of 1024 units and one of the size of the style descriptor
are placed at the end.

2.3.3.3 LSTM Network Our proposed architecture is heavily based on bidirectional
LSTM stacks and can be split in three parts: the char embedding layer, described in

12 METHODOLOGY

Section 2.3.3.1, the line descriptor module (Fig. 2.3a) and the style descriptor module
(Fig. 2.3b).

(a) Char embedding layer and line descriptor module

(b) Style descriptor module

Figure 2.3: The architecture of the LSTM-based model.

Line Descriptor Module This module is responsible for learning an embedding
fl(x) ∈ Rdl that maps lines of code to dl-dimensional descriptors. Each line of the source
code is fed – char by char – to the same char-level bidirectional LSTM stack. The last
element of the sequence produced by this LSTM is taken as the line descriptor.

Style Descriptor Module The line descriptors generated by the line descriptor
module are stacked back into a descriptor matrix. This module is responsible for learn-
ing an embedding fs(x) ∈ Rd that maps descriptor matrices to d-dimensional style de-
scriptors. Thus, the whole descriptor matrix is fed – line by line – to a line-level bidi-
rectional LSTM stack. The last element produced by this LSTM is passed through a
fully-connected layer and normalized to lie on the boundary of the d-sphere. The result
is taken as the desired style descriptor.

We believe this architecture encourages the network to learn in a divide-and-conquer
manner, by learning the individual features of each line and how to combine them into
a single descriptor. Moreover, it mitigates the backpropagation issue RNNs have when
dealing with large sequences, since the whole source code is broken into smaller pieces that
are fed to LSTMs separately. Our selection of hyperparameter values for this architecture
are given in Table 2.2. They were chosen through manual tuning.

2.3 SOURCE CODE EMBEDDING MODEL 13

Parameters Value
α, triplet loss margin 0.2
maximum line length 80

maximum number of lines 120
dc, char embedding size 72
dl, line descriptor size 64
d, style descriptor size 128

char-level LSTM hidden units (stacked) 128/64
line-level LSTM hidden units 128

fully-connected layer units 256

Table 2.2: Hyperparameters selected for the model.

2.3.4 Optimization

Although we decided the architecture of our model, we still have to make it learn. For
that end, we review two optimization methods widely used in multi-class identification
problems.

2.3.4.1 Softmax Cross-Entropy Loss The softmax function is commonly used in
multi-class classification problems. In a d-class scenario, let f(x) ∈ Rd be the output of
our neural network for a sample x. The softmax activation for this sample is given as

q(i) =
ef(x)i∑
j e

f(x)j
. (.)

q(i) assume values ranging from 0 to 1, and
∑

i q(i) = 1. Therefore, we can interpret
q(i) as the estimation of the probability of sample x belonging to class i. The softmax
cross-entropy loss is given as

L = −
d∑

i=1

p(x, i) log q(i) , (.)

where p(x, i) is the actual probability of x being from class i (usually a one-hot vec-
tor). Thus, by minimizing L, we minimize the cross-entropy between the probability
distribution p and an estimated distribution q.

Although softmax cross-entropy loss is a very powerful tool, it does not naturally
account for the fact that the number of classes may be unknown. Although there are
techniques to apply softmax in these scenarios (SUN et al., 2014; TAIGMAN et al., 2014),
there are other optimization methods designed for such cases. Also, it is not inherently
suited for generating descriptors. Hence, we restrict ourselves to use this method only
when the number of classes is known.

2.3.4.2 Triplet Loss Schroff et al. (2015) introduced triplet loss for training embed-
ding networks. In their work, the loss function is used in conjunction with a novel triplet

14 METHODOLOGY

mining algorithm to train an embedding network that maps images to descriptors. These
descriptors are then used to solve face recognition. Moreover, triplet loss works in sce-
narios where the number of classes is unknown. Therefore, it is well-suited for deciding
if two pieces of code are of the same person, even if they are unknown to the system. In
this section, we will present the L2 triplet loss.

The embedding is represented by f(x) ∈ Rd. Additionally, we constrain this embed-
ding to the boundary of a unit d-sphere, i.e.

∥∥f(x)
∥∥
2

= 1. This makes the Euclidean
distance between two embeddings proportional to their cosine similarity.

Let a, p, n (stand for anchor, positive and negative, respectively) be a triplet from
the training set such that a and p have the same label (positive pair), but a and n have
different labels (negative pair). Also, let T be the set of all possible said triplets. Then,
the L2 triplet loss is defined as

L =
∑

(a,p,n)∈T

max
(∥∥f(a)− f(p)

∥∥
2
−
∥∥f(a)− f(n)

∥∥
2

+ α, 0
)
, (.)

where α is a margin that is enforced between positive and negative pairs. If L = 0, then
for every triplet (a, p, n) ∈ T , it must be true that∥∥f(a)− f(p)

∥∥
2

+ α ≤
∥∥f(a)− f(n)

∥∥
2
. (.)

When Eq. . is fulfilled, the negative pair of a triplet will be at least as far as the
positive pair plus a margin α. Thus, by minimizing L, we push the distance of positive
pairs towards zero as we push the distance of negative pairs to be greater than the
correspondent positive’s by α. The advantage of this formulation is that, even though all
training samples of the same class will form a cluster, they are not required to collapse
to a single point. Fig. 2.4 shows a hypothetical scenario of optimization.

Generating all triplets from T would consider many triplets that easily satistfy Eq.
.. This would cause the training to converge slowly, since those triplets would still be
fed to the network, but would not contribute to loss minimization. Therefore, it is crucial
to select triplets that do not satisfy this condition to keep improving the model. These
are called hard triplets.

Online Semi-Hard Triplet Mining One way to select hard triplets from the train-
ing set is to consider every sample as the anchor a. Then, select such p that maximizes∥∥f(a)− f(p)

∥∥
2

and such n that minimizes
∥∥f(a)− f(n)

∥∥
2
. This does not scale with the

size of the training set. Moreover, it can cause outliers to dominate the selection process.
Schroff et al. suggested the online semi-hard triplet mining method to tackle both

problems. Instead of picking hard triplets from the whole training set, we pick them from
the mini-batch. Also, their work suggests that prioritizing triplets such that negatives lie
in the margin area (Fig. 2.4b) helps avoiding local minima early in the training. Such
triplets are called semi-hard.

Although in Chapter 3 we use softmax cross-entropy loss for comparison purposes,
we mostly worked with triplet loss. Therefore, our main optimization flow is pictured in
Fig. 2.5.

(a) (b) (c)

Figure 2.4: The region in red represents the margin area beyond p with diameter α.
Before loss optimization (a), the negative pair is closer than the positive. During loss
optimization (b), the negative pair is pushed further than the positive, but n is still in
the margin area. After loss optimization (c), the positive pair is finally closer and n is
beyond the margin.

Figure 2.5: Overview of network optimization pipeline.

Chapter

3
EVALUATION

In this chapter, we evaluate our model by solving two variations of the source code
attribution problem. In Section 3.1, we describe how we selected the parameters of our
model. In Section 3.2, we solve the authorship matching problem suggested in Chapter
2. In Section 3.3, we solve a closed-world identification problem.

3.1 TRAINING AND SELECTION

We trained and validated the proposed models with Tensorflow. We picked the training
samples from a balanced dataset with 20,000 C++ examples from 1,000 authors. A
validation set was built from another 3,200 samples from 400 authors. No author from
the training set was present on the validation set. All the samples were extracted from
the Codeforces dataset.

Although programming competitions resemble laboratory conditions, it is common
for participants to code on top of a pre-written file, usually called template. Although
the constructions present on a template file are usually written by the author himself,
they are not always used by the piece of code actually written during the competition.
Therefore, it is interesting to analyze how classifiers perform when such constructions
are stripped out of the code. For that end, we used clang1 to remove unused pieces of
code from a C++ program. Moreover, we also removed macros, a construction heavily
present in templates of competitive programmers. Therefore, we built two versions of
each dataset: one composed of raw source codes and other composed of codes processed
by clang.

We optimized parameters of each model with RMSprop (TIELEMAN; HINTON,
2012) for a maximum of 50 epochs, or until the evaluated equal error rate (EER) of
the model on the validation set had no improvement for 5 epochs. We used a learning
rate of 10−3. The version that yielded the highest EER was taken as the final model.

Finally, we trained two different versions of each model with the chosen hyperparam-
eters: one on the raw version of the dataset and other on the clang processed version.
Therefore, we trained 4 models in total.

1〈https://clang.llvm.org〉

17

18 EVALUATION

3.2 MATCHING TWO UNKNOWN SOURCE CODES

Figure 3.1: ROC curve for each pair of classifier and dataset version.

Using the models we trained, we tried to solve the problem of deciding if two source
codes are from the same author. For that end, we constructed a test dataset with 6,400
samples from 800 authors. These are samples from the Codeforces dataset that were
neither used on the training set nor in the validation set. Also, these three sets have no
intersection of authors. Therefore, the authors in the test set are unknown to the system.
Moreover, we ran clang on the samples, obtaining a clang processed version of the test
dataset.

Finally, we evaluated these models. The results can be seen in Fig. 3.1 and Table 3.1.

EER (%)
LSTM (raw) 13.88
LSTM (clang) 11.6
CNN (raw) 16.31
CNN (clang) 16.9

Table 3.1: Equal error rate (EER) evaluation of the trained models on each test set.

The LSTM model beats the CNN model by a 3% margin. We can notice that the
performance on raw source codes is slightly worse than the others. This can be related
to the fact that tested authors are not present in training and validation sets. The model
is probably relying more on features present on templates, instead of on stylistic features
of the written code. Therefore, the embeddings generalize poorly to unknown authors.

3.3 ONE-TO-MANY AUTHOR IDENTIFICATION 19

The better performance of the clang combination supports this claim by showing that
learning from features of the written code yields better generalization.

3.3 ONE-TO-MANY AUTHOR IDENTIFICATION

We also evaluated our models on the problem posed by Caliskan-Islam et al.. In their
work, a subsample of 9 C++ source codes from 250 programmers is extracted from the
Google Code Jam’s 2014 dataset. From this, 8 samples are used for training and one
for testing. We simply took the models we trained for the previous experiment, added a
fully-connected layer and replaced triplet loss with softmax cross-entropy loss. Then, we
trained this layer on the 250× 8 source codes for 50 epochs.

The rank-n metric evaluations, for n = 1 and n = 3, can be seen in Table 3.2.

rank-1 (%) rank-3 (%)
LSTM (raw) 74.8 84.4
LSTM (clang) 69 82.8
Caliskan-Islam et al. 95.08 n/a

Table 3.2: Rank-n metric for the one-to-many identification problem on 250 programmers
of the Google Code Jam dataset.

Although we were not able to match the Random Forest model proposed by Caliskan-
Islam et al. (2015), we are able to show that the generated descriptors are discriminative.
We also experimented with training the whole model, as opposed to training only the last
layer, but the training convergence was slower and there was no accuracy improvement.
Fig. 3.2 shows the style descriptors of source codes from 12 programmers of Google Code
Jam dataset. They were embedded into a two-dimensional space for better visualization.

We also sampled 8 source codes from 250 programmers of our Codeforces dataset.
Then, we conducted the same experiment proposed by Caliskan-Islam et al. in this sample.
The results can be seen in Table 3.3.

rank-1 (%) rank-3 (%)
LSTM (raw) 70.1 80.3
LSTM (clang) 69.02 78.5

Table 3.3: Rank-n metric for the one-to-many identification problem on 250 programmers
of the Codeforces dataset.

Figure 3.2: 128-dimensional descriptors from 12 authors generated by the LSTM model,
trained and test on the clang test set. Each author is represented by a different color.
The descriptors were embedded into a two-dimensional space with t-SNE.

Chapter

4
CONCLUSION

This work offers a study on the application of deep learning methods to the source code
authorship attribution problem. In particular, we have proposed a LSTM-based model
that generates descriptors that preserve stylistic similarities between source codes. More-
over, we have shown experiments supporting that stylistic features are discriminative.

We introduced the Codeforces dataset for the source code attribution problem. This
dataset contains 29,600 samples from 2,200 authors and is composed of source codes
extracted from a website specialized in programming competitions. This dataset was
packaged and made public.

We evaluated our model in the problem of deciding if two codes were written by the
same person and achieved 11.6 % of EER. In the one-to-many identification problem, we
achieved 74.8% accuracy, 20% less than state-of-the-art. Although we were not able to
improve this result, we believe state-of-the-art deep learning methods can be successfully
applied to the source code attribution problem, and that further improvements in the
area will be related to that.

In the future, we hope to modify our models to support variable-length code. We also
want to generate meaningful style descriptors from abstract syntax trees to improve the
accuracy of our methods. Moreover, we want to be able to classify small pieces of code,
like those of Git repositories.

21

BIBLIOGRAPHY

ALSULAMI, B. et al. Source Code Authorship Attribution Using Long Short-Term Mem-
ory Based Networks. 2017. 65-82 p.

BANDARA, U.; WIJAYARATHNA, G. Deep neural networks for source code author
identification. In: Proceedings, Part II, of the 20th International Conference on Neural
Information Processing - Volume 8227. New York, NY, USA: Springer-Verlag New York,
Inc., 2013. (ICONIP 2013), p. 368–375. ISBN 978-3-642-42041-2. Available from Internet:
〈http://dx.doi.org/10.1007/978-3-642-42042-9\ 46〉.

BENGIO, Y.; COURVILLE, A.; VINCENT, P. Representation learning: A review and
new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., IEEE Computer Society,
Washington, DC, USA, v. 35, n. 8, p. 1798–1828, ago. 2013. ISSN 0162-8828. Available
from Internet: 〈http://dx.doi.org/10.1109/TPAMI.2013.50〉.

BENGIO, Y.; SIMARD, P.; FRASCONI, P. Learning long-term dependencies with
gradient descent is difficult. Trans. Neur. Netw., IEEE Press, Piscataway, NJ, USA,
v. 5, n. 2, p. 157–166, mar. 1994. ISSN 1045-9227. Available from Internet: 〈http:
//dx.doi.org/10.1109/72.279181〉.

BOLLE, R. et al. Guide to Biometrics. [S.l.]: SpringerVerlag, 2003. ISBN 0387400893.

BURROWS, S.; TAHAGHOGHI, S. M. M. Source code authorship attribution using
n-grams. In: RMIT UNIVERSITY. [S.l.: s.n.], 2007. p. 32–39.

BURROWS, S.; TAHAGHOGHI, S. M. M.; ZOBEL, J. Efficient plagiarism detection
for large code repositories. Softw. Pract. Exper., John Wiley & Sons, Inc., New York,
NY, USA, v. 37, n. 2, p. 151–175, fev. 2007. ISSN 0038-0644. Available from Internet:
〈http://dx.doi.org/10.1002/spe.v37:2〉.

BURROWS, S.; UITDENBOGERD, A. L.; TURPIN, A. Application of information re-
trieval techniques for source code authorship attribution. In: Proceedings of the 14th
International Conference on Database Systems for Advanced Applications. Berlin, Hei-
delberg: Springer-Verlag, 2009. (DASFAA ’09), p. 699–713. ISBN 978-3-642-00886-3.
Available from Internet: 〈http://dx.doi.org/10.1007/978-3-642-00887-0\ 61〉.

CALISKAN-ISLAM, A. et al. De-anonymizing programmers via code stylometry. In:
Proceedings of the 24th USENIX Conference on Security Symposium. Berkeley, CA, USA:
USENIX Association, 2015. (SEC’15), p. 255–270. ISBN 978-1-931971-232. Available
from Internet: 〈http://dl.acm.org/citation.cfm?id=2831143.2831160〉.

23

24 BIBLIOGRAPHY

DAUBER, E. et al. Git blame who?: Stylistic authorship attribution of small, incomplete
source code fragments. CoRR, abs/1701.05681, 2017. Available from Internet: 〈http:
//arxiv.org/abs/1701.05681〉.

FRANTZESKOU, G. et al. Identifying authorship by byte-level n-grams: The source
code author profile (scap) method. IJDE, v. 6, n. 1, 2007. Available from Internet: 〈http:
//dblp.uni-trier.de/db/journals/ijde/ijde6.html\#FrantzeskouSGCH07〉.

GAL, Y.; GHAHRAMANI, Z. A theoretically grounded application of dropout in re-
current neural networks. In: Proceedings of the 30th International Conference on Neural
Information Processing Systems. USA: Curran Associates Inc., 2016. (NIPS’16), p. 1027–
1035. ISBN 978-1-5108-3881-9. Available from Internet: 〈http://dl.acm.org/citation.cfm?
id=3157096.3157211〉.

GRAVES, A.; JAITLY, N.; MOHAMED, A. rahman. Hybrid speech recognition with
deep bidirectional lstm. 2013 IEEE Workshop on Automatic Speech Recognition and Un-
derstanding, p. 273–278, 2013.

GREFF, K. et al. LSTM: A search space odyssey. CoRR, abs/1503.04069, 2015. Available
from Internet: 〈http://arxiv.org/abs/1503.04069〉.

HAYES, J. H.; OFFUTT, J. Recognizing authors: an examination of the consistent pro-
grammer hypothesis. Softw. Test., Verif. Reliab., v. 20, n. 4, p. 329–356, 2010. Available
from Internet: 〈https://doi.org/10.1002/stvr.412〉.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural Comput.,
MIT Press, Cambridge, MA, USA, v. 9, n. 8, p. 1735–1780, nov. 1997. ISSN 0899-7667.
Available from Internet: 〈http://dx.doi.org/10.1162/neco.1997.9.8.1735〉.

IRSOY, O.; CARDIE, C. Bidirectional recursive neural networks for token-level labeling
with structure. CoRR, abs/1312.0493, 2013. Available from Internet: 〈http://arxiv.org/
abs/1312.0493〉.

JOY, M.; LUCK, M. Plagiarism in programming assignments. IEEE Trans. on Educ.,
IEEE Press, Piscataway, NJ, USA, v. 42, n. 2, p. 129–133, maio 1999. ISSN 0018-9359.
Available from Internet: 〈https://doi.org/10.1109/13.762946〉.

MACDONELL, S. G. et al. Software forensics for discriminating between program au-
thors using case-based reasoning, feedforward neural networks and multiple discriminant
analysis. In: ICONIP’99. ANZIIS’99 ANNES’99 ACNN’99. 6th International Conference
on Neural Information Processing. Proceedings (Cat. No.99EX378). [S.l.: s.n.], 1999. v. 1,
p. 66–71 vol.1.

MARTINS, V. T. et al. Plagiarism Detection: A Tool Survey and Comparison. In:
PEREIRA, M. J. V.; LEAL, J. P.; SIMÕES, A. (Ed.). 3rd Symposium on Languages, Ap-
plications and Technologies. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2014. (OpenAccess Series in Informatics (OASIcs), v. 38), p. 143–158. ISBN

BIBLIOGRAPHY 25

978-3-939897-68-2. ISSN 2190-6807. Available from Internet: 〈http://drops.dagstuhl.de/
opus/volltexte/2014/4566〉.

MENDENHALL, T. C. The characteristic curves of composition. Science, American Asso-
ciation for the Advancement of Science, ns-9, n. 214S, p. 237–246, 1887. ISSN 0036-8075.
Available from Internet: 〈http://science.sciencemag.org/content/ns-9/214S/237〉.

NARAYANAN, A. et al. On the feasibility of internet-scale author identification. In: Pro-
ceedings of the 2012 IEEE Symposium on Security and Privacy. Washington, DC, USA:
IEEE Computer Society, 2012. (SP ’12), p. 300–314. ISBN 978-0-7695-4681-0. Available
from Internet: 〈https://doi.org/10.1109/SP.2012.46〉.

PELLIN, B. Using classification techniques to determine source code authorship. 2000.

PRECHELT, L.; MALPOHL, G.; PHILIPPSEN, M. JPlag: Finding plagiarisms among
a set of programs. [S.l.], 2000.

SCHLEIMER, S.; WILKERSON, D. S.; AIKEN, A. Winnowing: Local algorithms for
document fingerprinting. In: Proceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Data. New York, NY, USA: ACM, 2003. (SIGMOD ’03),
p. 76–85. ISBN 1-58113-634-X. Available from Internet: 〈http://doi.acm.org/10.1145/
872757.872770〉.

SCHROFF, F.; KALENICHENKO, D.; PHILBIN, J. Facenet: A unified embedding for
face recognition and clustering. CoRR, abs/1503.03832, 2015. Available from Internet:
〈http://arxiv.org/abs/1503.03832〉.

SPAFFORD, E. H.; WEEBER, S. A. Software forensics: Can we track code to its authors?
Comput. Secur., Elsevier Advanced Technology Publications, Oxford, UK, UK, v. 12, n. 6,
p. 585–595, out. 1993. ISSN 0167-4048. Available from Internet: 〈http://dx.doi.org/10.
1016/0167-4048(93)90055-A〉.

SUN, Y.; WANG, X.; TANG, X. Deeply learned face representations are sparse, selective,
and robust. CoRR, abs/1412.1265, 2014. Available from Internet: 〈http://arxiv.org/abs/
1412.1265〉.

TAIGMAN, Y. et al. Deepface: Closing the gap to human-level performance in face
verification. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pat-
tern Recognition. Washington, DC, USA: IEEE Computer Society, 2014. (CVPR ’14), p.
1701–1708. ISBN 978-1-4799-5118-5. Available from Internet: 〈https://doi.org/10.1109/
CVPR.2014.220〉.

TIELEMAN, T.; HINTON, G. Lecture 6.5—RmsProp: Divide the gradient by a run-
ning average of its recent magnitude. 2012. COURSERA: Neural Networks for Machine
Learning.

26 BIBLIOGRAPHY

ZHANG, X.; ZHAO, J. J.; LECUN, Y. Character-level convolutional networks for text
classification. CoRR, abs/1509.01626, 2015. Available from Internet: 〈http://arxiv.org/
abs/1509.01626〉.

